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ABSTRACT 
 
In this work we describe a geographic information systems (GIS) problem where organizations attempt 
to manage assets like signs or trees in geospatial inventories, but struggle in maintaining these up-to-
date as they usually just rely on field work to identify issues. At the same time, mobile sensor platforms 
with LiDAR and camera sensors are becoming more widely available and potentially more so in the 
future with the development of autonomous vehicles with these sensors. We look at ways to leverage 
point cloud data from these sensors and perform change detection analysis to identify assets that may 
need inspection. Open source tools are employed to simulate an urban environment and generate 
synthetic point cloud data. We process the data to prepare it for two change detection methods, one 
with a simple voxel grid intersection (VB), and the other a machine learning (ML) approach using the 
PointNet project. The results go through an F1 score analysis to help determine test accuracies for both 
methods. The VB approach outperforms the ML method used, but both can still be further optimized. 
 

1 INTRODUCTION 

Recent and ongoing advances in autonomous vehicle technology by major companies is spurring 
innovation with the potential to improve the capabilities and lower the cost of vital LiDAR, camera, and 
other sensors needed by these vehicles for independent navigation. Whether as a byproduct of 
autonomous car usage or increased accessibility to dedicated mobile platforms with similar sensors, we 
can expect more point cloud data in the future for environments in proximity to transportation 
networks. This work examines the viability of leveraging such data to help solve geospatial problems for 
those environments. The work focuses on minimizing the challenge of maintaining a geospatial database 
with urban infrastructure assets up-to-date by analyzing mobile platform point cloud data to detect 
changes over time. The work follows a synthetic approach to generate analysis data by creating a 
simulation environment with an Unreal Engine 3D map or model. There is also an additional emphasis 
on utilizing open source software tools to minimize costs and facilitate sharing scripts or other data from 
any part of the workflow. We use the CARLA Simulator1 (Dosovitskiy et al., 2017), meant for 
autonomous vehicle research, to generate a synthetic point cloud of areas visible to a virtual 
autonomous vehicle. The exported sensor data is processed with CloudCompare and made ready for 
further analysis using point cloud data change detection methods. We also test two separate methods 
for this analysis including a machine learning (ML) approach with a PointNet2  (Qi et al., 2016) 
TensorFlow3 implementation in Python4, and the other a simpler voxel grid (VB) intersection technique. 
The results of these techniques applied to change detection make predictions on whether it is likely that 
a detectable change has taken place for any asset between time specific conditions. This information 
serves to update the geospatial database and help prioritize further confirmation more directly.  
 
 
 
 
 

                                                           
1 https://github.com/carla-simulator/carla 
2 https://github.com/charlesq34/pointnet 
3 https://www.tensorflow.org/ 
4 https://www.python.org/ 
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2 BACKGROUND 

 

2.1  AUTONOMOUS VEHICLES  

 Although long promised, technical hurdles have so far held back the realization of our science fiction 
vision of a world of self-driving cars. Recently, the confluence of the required technologies seems to put 
a world with autonomous vehicles within reach, with major companies like Google, Tesla, and General 
Motors pouring significant resources in the development of this technology that is showing tangible 
progress that will lead to the deployment of this technology in real world applications. In order to 
perform any autonomous tasks a vehicle with this capability is outfitted with the necessary hardware.  
As shown in Figure 1, this may include a combination of sensors like GPS, depth cameras, radar, and 
LiDAR in addition to a dedicated computer unit and critical software. These sensors allow the car to 
perceive its environment as it navigates. They also allow these vehicles to essentially become remote 
sensing platforms capable of generating big data with an important geospatial component. There are 
also dedicated vehicles for gathering this type of data, such as those employed by Google to create 
Street View. These mobile sensor platforms, especially LiDAR, may see significant cost reductions as a 
result of increased research, competition, and economies of scale as autonomous vehicles are 
increasingly deployed. These sensors will routinely capture images and generate LiDAR point clouds of 
the road and any adjacent infrastructure including sidewalks, traffic signs, utility poles, building façade, 
and other assets.  
 
Cities and utility companies already keep detailed inventory systems to help keep track of maintenance 
and other costs for these assets. It is also increasingly common that these inventory systems integrate 
GIS databases since location is crucial to effectively manage them. However, keeping the information in 
these databases up-to-date can be challenging and costly since it usually requires field crews to be 
deployed. As a result, some of these assets can go years or months before being updated. As 
autonomous vehicles are increasingly deployed, and the data generated by their sensors become more 
available, it opens the opportunity for geospatial professionals to leverage such data to improve or 
automate their workflows. Figuring out effective ways to do that is the central objective of the project 
described in this proposal. 
 



5 
 

 
Figure 1: Autonomous vehicles come equipped with a range of sensors to perceive their environment as they 
attempt to perform independent navigations tasks. (Source: Google) 

2.2  MOBILE SENSOR PLATFORMS 

Currently there are mobile LiDAR hardware options with impressive capabilities, but these solutions are 
still expensive. Leica Geosystems has the Pegasus 25 laser scanner or LiDAR sensor that is intended for a 
mobile platform such as a vehicle as shown in Figure 2 below. There are some alternatives from other 
companies, such as the ROBIN6 by 3D Laser Mapping which is a smaller version that can be mounted on 
a large drone or carry in a backpack. The current prohibitive cost of these platforms limits their use, but 
they may become more common in the future. These dedicated platforms can collect denser point 
clouds due to a higher resolution. 
 

                                                           
5 https://leica-geosystems.com/en-US/products/mobile-sensor-platforms/capture-platforms/leica-pegasus_two 
6 https://www.3dlasermapping.com/robin-mobile-mapping-system/ 
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Figure 2: Pegasus 2 platform by Leica Geosystems mounted on a vehicle. (Source: Leica Geosystems) 

Whichever platform is used to produce the point cloud data and related images captured with the 
camera sensors, the data can be a resource to track streetscape changes overtime by implementing 
some change detection algorithms. 

2.3  CHANGE DETECTION ALGORITHMS 

Some work related to change detection   is available in the literature. Historically a common approach 
for change detection was to calculate the point distance to a reference model (N. Aspert et al., 2002) as 
is implemented in MESH7. However, the need to convert between point cloud and mesh object was a 
major downside. There is some irony that this early approach could work rather well with simulated 
environments we describe later since a 3D mesh for a model can be exported more easily than 
generating a point cloud. A later technique common in GIS (Vögtle et al., 2004) for urban areas 
compared digital surface models (DSMs) from a reference and test condition to classify buildings, 
vegetation, and terrain. The technique relied on segmentation of the data into separate 3D objects, the 
building object class are compared for overlapping areas and assigned the values non-modified, 
heightened, or decreased. This technique targeted change detection in buildings after an earthquake 
and had limited applicability at the streetscape asset level.  
 
One additional change detection algorithm implementation is described by Liu et al. in 2016 which uses 
the Apache Spark8 application. The approach leverages cloud computing parallel processing to build and 
process voxel grids and then calculating geometric differences by comparing each voxel in the different 
point clouds. Another  method is described in 2005 by Girardeau-Montaut et al. consisting of a direct 
point cloud comparison using an octree, which is a recursive and consistent subdivision of 3D space. This 
method relies on determining the Hausdorff distance between sets of points, but that means the user 
needs to determine a distance threshold. More recently in 2013 Aijazi et al. described a technique for 
change detection in which point clouds are classified to remove temporary points, and then comparing 
the similarity between 3D cells or voxel grids and creating a similarity map. This approach is rather 
complex, but shares some basic similarities with the grid occupancy voxel based (VB) approach. 
 

                                                           
7 https://github.com/naspert/MESH 
8 https://spark.apache.org/ 
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3 OBJECTIVES 

This work intended to examine possible ways to leverage resulting sensor data from autonomous 
vehicles or related mobile sensor platforms to help solve a common GIS data maintenance problem. In 
this scenario an urban jurisdiction maintains a detailed GIS database of road-adjacent infrastructure 
assets, but often finds feature locations and attributes to be outdated. Part of our work focus was on 
ways to keep these assets updated by integrating autonomous vehicle or related platform sensor data. 
Specifically, it aimed to determine how to implement change detection and object classification 
methods in point cloud data from autonomous vehicles to help automate updates to geospatial features 
in a database for infrastructure assets. 
 
One of the most important requirements for the project involved acquiring or generating sensor data 
needed for analysis. This meant repeatedly taking point cloud and image data for a study area before 
and after infrastructure assets are changed in any way. This introduced the major challenge of 
consistently and reliably acquiring such data, which was vital for the analysis. Lacking consistent access 
to the necessary sensor hardware meant alternative options had to be considered. This was solved by 
using a simulated environment for the study area with virtual autonomous vehicles and sensors. This 
allowed synthetic sensor data to be generated on demand, thus enabling an iterative and methodical 
approach to evaluate analysis tools and algorithms. The work relied on open source software tools and 
algorithms and supporting these options was a significant goal for this project. Major milestones to help 
achieve the main goals included these major workflow components, which are also detailed in Figure 3: 
 

• Use a virtual 3D model of study area to simulate real world conditions 

• Generate sensor point cloud data for analysis 

• Perform change detection and feature extraction analysis on point cloud data by comparing a 
voxel intersect approach (VB) and a machine learning (ML) method 

• Identify managed assets and assign change status 

• Automate GIS database updates based on analysis results 

• Visualize results in a web application 
 
Fundamentally this work sought to answer questions regarding the feasibility of leveraging the sensor 
data at all, describing the methods and tools that proved most efficient, and the impact of the synthetic 
nature of the source data. In a more tangible sense It also includes a connected system of open source 
analysis tools, asset database, and visualization of results. 
 

4 WORKFLOW 

Unreal Engine 4 (UE4)9 from Epic Games is a 3D video game engine that allows the creation and 
modification of a model that may represent an actual study area or a fictional site. The CARLA 
Simulator10 is a major plugin created for UE4 that adds an autonomous vehicle simulation component 
while integrating its own Python API to program simulation parameters such as route and sensor 
information. CARLA is actively developed by the Computer Vision Center at the Autonomous University 
of Barcelona with support from Intel and Toyota. These two components make up the simulated portion 
of the environment. The analysis portion includes the use of the CloudCompare11 software, which was 

                                                           
9 https://www.unrealengine.com/en-US/what-is-unreal-engine-4 
10 https://github.com/carla-simulator/carla 
11 https://www.danielgm.net/cc/ 
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developed by researchers with the Electricity of France state power company. CloudCompare is used to 
manipulate and visualize point cloud data. The change detection analysis relies on Python to compare a 
machine learning approach (ML) and a voxel grid intersection (VB) method. The infrastructure asset GIS 
database starts as GeoJSON features for simplicity but may be loaded into a PostgreSQL system with 
PostGIS12. Visualization and management of these features can be made available to possible 
stakeholders through a web map application developed with JavaScript libraries. Most of these software 
packages are open source and any contributions made   during this work are also open and available on 
GitHub13. 
 
The major tasks performed are divided into three main sections or components, starting with the 
simulation, moving to sensor data analysis, and finally the asset inventory GIS database (Figure 3).  
 

 
Figure 3: The three main sections of the workflow are divided into simulation, sensor data analysis, and GIS 
database results and visualization. 

 

4.1 SIMULATION 

Video game engines like UE4 refer their 3D model environments as ‘maps’ and we follow this 
convention. Creating your own UE4 map can be very time-consuming and, in this work, we are limited to 
a pre-existing fictional urban area. However, new releases of the CARLA Simulator are making it easier to 
build your own UE4 map by allowing you to use other software that can import GIS data as a starting 
point. This should help minimize the time needed to create a custom UE4 map. Some effort towards 
virtualizing a small study area in San Diego has been made and will be made available in follow-up work.  

                                                           
12 https://postgis.net/ 
13 https://github.com/bienalon/ChangeDetection_MobileLiDAR 
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The first portion of the work entailed generating the point cloud data using the CARLA Simulator. We 
compiled the source code for version 0.8.3 of the CARLA Simulator under the Unreal Engine 4.18 (UE4) 
library on Windows 10 following the project documentation. The default map represents a somewhat 
realistic virtual town layout with a mix of land use types. The study is focused on a large square block of 
a residential area as shown on Figure 4. 
 

 
Figure 4: 2D layout of the CARLA Simulator map for Town 1 with a rectangular area highlighted in yellow showing 
the study area. 

The game map was opened in the UE4 Editor environment to allow edits to the assets adjacent to the 
streets that were intended to be captured. Figure 5 shows the main interface for the UE4 Editor and 
CARLA plugin with the default map loaded. This is where edits to the simulated urban environment were 
made before running the process to generate the sensor data. 
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Figure 5: The Unreal Engine 4 Editor with integrated CARLA Simulator plugin and showing the default town model 
or map. 

Additional assets were also added to have a wider selection of asset samples for the analysis. In total 
200 assets meant to be tracked were placed in the map to represent the reference or initial conditions 
set of data. These assets include lamps, trees, traffic signs and others as shown in Table 1. 
 

Asset Type # of Samples   
Acerifolia Tree 5 Maple Tree 19 

Arbusto Pine Tree 2 Parking Meter 20 

Bare Acerifolia Tree 1 Pedestrian Lamp 10 

Bare Sassafras Tree 2 Quercus Tree 3 

Bench 9 Saccharum Tree 1 

Bus Stop 4 Sassafras Tree 10 

Cypress Tree 11 Speed Limit 9 

Date Palm 1 Stop sign 3 

Electric Pole 4 Totai Palm 4 

Fan Palm 10 Traffic Light 12 

Fire Hydrant 6 Trash Can 4 

Lamp 37 White Fir Tree 6 

Mail Box 7   

Table 1: List of assets added to the simulated environment that are street adjacent and meant to tracked between 
reference and test conditions. 
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Once the map and updated assets were ready the CARLA Simulator Python API was used to specify a 
vehicle actor with a LiDAR and camera sensor array. The vehicle with the sensor platform was then 
instructed to drive around the designated streets in the scope area of the map. At the same time, the 
custom script would take a sensor snapshot every 20 frames, post-process the data, and save an RGB 
point cloud file of the data in the Stanford Polygon File (PLY) format with a sample shown on Figure 6. 
The automated process generated 344 files with an average size of about 7.5 MB. This is the ‘reference’ 
environment and all derived data will be referred to as such. 
 

 
Figure 6. PLY format export from CARLA Simulator with point cloud data generated with RGB color values from 
virtual depth camera sensor. 

The entire CARLA Simulator project folder was then duplicated to serve as the ‘test’ environment to 
generate the data needed to compare to the initial batch after some deliberate changes. The UE4 Editor 
was again used to make changes to the initial assets in the map, by moving, rotating, covering, or 
otherwise changing the some of the initial assets. Once the map reflected the new changes, the 
simulation ran again for the same path with the same parameters, but now capturing the changes to the 
infrastructure assets. This process may have been repeated multiple time as needed for analysis and 
machine learning training. The simulated or synthetic camera and LiDAR data included 376 PLY point 
cloud files to be used for the next portion of the analysis. 
 

4.2 SENSOR DATA ANALYSIS 

The sensor data export process generates a set of PLY format files per frame with point cloud 
information. Figure 7 shows the CloudCompare interface loaded with point cloud data created with the 
CARLA Simulator. Using Python and including the modules PyntCloud14, and Pandas the small PLY files 
from each batch were merged into two temporally distinct point clouds covering the entire study area. 
Since the PLY files included significant overlap, the merged point clouds were optimized using 

                                                           
14 https://github.com/daavoo/pyntcloud 
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CloudCompare by removing all duplicate points.  The optimized reference point cloud came in at 836 
MB, while the test file ended up being about 871 MB. If some of the point clouds became misaligned 
during processing for any reason, Open3D15 (Zhou et al., 2018) was used to register and align them 
based on overlapping similarities. At this point we needed to determine the locations of all the tracked 
assets as they would be in an asset inventory in a GIS system. All 200 assets were digitized into a vector 
layer in QGIS 2.18 with attributes that included feature type, a unique feature name, and fields 
describing the coordinates of a square bounding box centered around each asset points. The purpose of 
the bounding box was to designate the area of interest around each asset to limit the size of the point 
cloud for analysis and to allow processing of point cloud data per individual asset. Using Python with the 
PyntCloud and GeoJSON modules we iterate though each asset point in a GeoJSON file and crop the 
reference and test point clouds with the bounding box limits resulting in two new batches of 200 ply 
files each. 
 

 
Figure 7: CloudCompare application showing point cloud generated with the CARLA Simulator ready for merging 
and other analysis.  

4.2.1 Change Detection Analysis 

This basic principle is implemented with a custom Python script again using the PyntCloud module. Our 
script iterates through the asset GeoJSON file to open each corresponding and identically named ply file 
in the reference and test folders. For each point cloud pair, the script temporarily merges them both and 
adds a voxel grid of shape 64x64x64 covering the extent of the combined point cloud as shown on 

                                                           
15 http://www.open3d.org/ 



13 
 

Figure 8. This process ensures that subsequent voxel grids in the analysis share the same shape and can 
be intersected using standard Numpy array methods.  Once the overall voxel grid for the extent of the 
merged point clouds is created,   we query the populated voxels that have points for each separate 
reference and test point cloud. This creates two new voxel grids unique to each condition, but that still 
share an overall shape. These are then intersected using the Numpy.intersect1d function which gives us 
results with the number of populated voxels shared by both point clouds, as well how many are only 
either occupied in the reference or test point clouds.  
 

 
Figure 8: Voxel grid visualization with the test condition (A) showing a tilted lamp, the reference condition (B) 
showing a normal lamp, and the merged point cloud voxel grid with both conditions. 

The script then adds fields to the GeoJSON containing these three values, which are then used to 
determine the ‘match’ percent value by simply using the formula: 
 

𝑅𝑖 =  
𝑉𝑖

(𝑉𝑖 + 𝑉𝑟 + 𝑉𝑡)
 

 
The formula shows the intersection rate (Ri) is determined simply by dividing the voxel intersect (Vi) by 
the sum of itself, the voxel reference (Vr), and the voxel test (Vt).  
 
Some example values resulting from this process include asset ‘SpeedLimit4’ which had voxel intersect 
value of 0.92, meaning that it was likely unchanged and further verification confirms that to be the case. 
It is shown in Figure 9 with little variation between the reference and test point clouds. In contrast 
‘SpeedLimit9’ had a voxel intersect value of 0.09 indicating significant change, which can be confirmed 
by the apparent orientation difference due to the rotation event shown in Figure 10. 
 



14 
 

 
Figure 9: Asset Speed Limit 4 is shown with green test condition against RGB reference condition points 
overlapping and not indicating any change. 

 

 
Figure 10: Asset Speed Limit 9 is shown as having been rotated along its vertical axis which denotes a significant 
change flagged correctly by a voxel intersect. 
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4.2.2 PointNet 

We wanted to determine how a machine learning method would do in supporting this main workflow by 
using object classification. PointNet is an implementation by the original authors based on their 
published paper (Qi et al., 2016). The paper describes a deep learning neural network that takes direct 
point cloud data as input and able to perform object classification, and both part and semantic 
segmentation. Figure 11 shows that he PointNet architecture uses max pooling to aggregate optimal 
values resulting from the learning process as point functions select points deemed critical or 
representative.  
 
  

 
Figure 11: This workflow schematic shows the core components of the PointNet architecture and includes the path 
the point cloud data takes to give final prediction results. (Source image: PointNet paper (Qi et al., 2016)) 

The PointNet authors provide Python code on GitHub for implementing their neural network 
architecture using TensorFlow, CUDA, and cuDNN, and therefore requiring a compatible NVIDIA GPU. 
The available PointNet project is hardcoded to work with the ModelNet40 (modelnet.csprincton.edu) 
dataset. The dataset is in the h5 format and contains 2048 point clouds with 2048 points sampled from 
ModelNet40 3D models. As the name implies, the dataset models represent 40 different object classes. 
Deviating from this data structure shape of 2048x2048x3 required changes to the provided code base.  
 
These constraints on the expected input meant that to use our own data with PointNet changes to the 
code would be necessary. It also meant our input data would have to be preprocessed significantly to be 
able to feed it to the neural network. Our point cloud data varied in density and complex shapes like 
trees would require more than 2048 points to retain a discernable shape. The PointNet code was 
changed to take 25 object classes for our corresponding number of asset types. The points in each point 
cloud was increased from 2048 to 8192 points, and the total number of point clouds inside the h5 file 
went down to just 200 including our total number of assets. Additional Python code was developed to 
process or asset ply filed by up-sampling if lower than 8192 points and subsampling when higher. These 
point clouds were then assigned class label codes and bundled into an h5 file in the expected format. 
This process was performed separately for the reference point cloud batch as well as the test batch. 
These files were fed to the PointNet neural network as the required training and evaluation datasets, 
and the training portion was run through the default 250 training epochs. Due to the high GPU hardware 
requirements the training took place on Microsoft Azure Cloud on an NC6 Standard virtual machine.  
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After training the model with the new input data we ran the evaluation script which output a simple text 
file with a sequential list of all 200 assets identified by class ID and a corresponding value with the 
predicted class. The script was also modified to also include another column in the output file with a 
confidence score for each asset prediction.  
 
In this work we attempt to use the object recognition or point cloud classification capabilities of the 
PointNet project in a change detection context. Since PointNet is designed to look for similarities or 
differences between a training (our reference condition data) and an evaluation (our test condition 
data) point cloud, we could argue that ideally a class prediction from PointNet is a measure of similarity. 
When PointNet evaluates an input point cloud based on the TensorFlow model resulting from the ML 
training it assigns a confidence or probability value for all the possible classes (asset types) in the data. 
Its final class prediction is simply the highest scoring value, and these are derived from the softmax 
function implemented in the final layer of the neural network classifier in PointNet. As the returned 
value is normalized between 0 and 1, we use it as a confidence score, but for the one that is the actual 
class of the asset instead of the one for the predicted class, which is just the highest value returned by 
the TensorFlow function used. This confidence score is used in the results analysis as a threshold value 
for the F1 score analysis. 
 
 

4.3 INFRASTRUCTURE ASSET INVENTORY 

In a GIS context an asset inventory can be kept in a range of geospatial formats, from a simple local 
shapefile or GeoJSON to a more robust relational database. Ideally, such data would be stored in 
something like an ArcGIS Enterprise geodatabase or the open source Postgres/PostGIS database. Our 
inventory of 200 street-adjacent assets is kept initially in a GeoJSON for easier data manipulation with 
local Python scripts that integrate it closely with several steps in data processing including storing 
results. However, in a production environment this would be reconciled with a version stored in a 
PostGIS database with those assets.  
 

5 RESULTS 

 

5.1 F1 SCORES 

 
As part of the analysis results, we attempt to compare the relative accuracy of each change detection 
method to help us interpret the data to have better informed conclusions. The ML method code was 
modified to generate a TensorFlow prediction confidence value for each asset class on a range between 
0 and 1. The VB method created a result providing the decimal percent of intersecting voxels in the 
merged grid. Both these values were used to independently define threshold values to run an F1 score 
analysis. 
 
Table 2 shows how assets were randomly divided into training and evaluation datasets, and each asset 
based on the threshold were categorized as true positive (TP), true negative (TN), false positive (FP), and 
false negative (FN). The training dataset totals were used to calculate precision, recall, and the F1 scores 
for threshold increments of 0.1 between 0 and 1. These threshold values from low to high were meant 
to check a broad range to see how the accuracy results clustered and to identify the highest scoring F1 
score. The best performing threshold for each method (0.8 for ML and 0.3 for VB) were used to calculate 



17 
 

the F1 scores on the evaluation dataset for both the ML and VB methods. For the evaluation dataset the 
final F1 scores for our samples were 0.56 for the ML method and 0.84 for the VB approach with a 0.28 
difference between both scores. These preliminary results show a significant difference between the 
two tested methods with the VB method outperforming our ML implementation in change detection. 
 

 
Table 2: F1 score results table shows for both methods (ML and VG) the number of true positives, true negatives, 
false positives, and false negatives for given thresholds. The table shows the precision, recall, and F1 score derived 
for each threshold. 

5.2 ANALYSIS RESULTS 

Based on the evaluation dataset thresholds, we can draw a couple of examples of false positive and false 
negative results for each change detection method. For the ML approach out of the 18 false positives in 
the evaluation dataset 66% were trees. For example, asset ‘QuercusTree1’ was misclassified by 
predicting it was a traffic light when there was really no change and the confidence score for the actual 
asset type was 0.009, which indicates PointNet is wrongly confident that it was not a Quercus tree. One 
potential factor for these results is that tree point clouds tend to have more variation between different 
areas due to their organic branching. They also tend to spread out and it could be more likely that a 
cropped point cloud area around a tree and branches contains other structures or objects in close 
proximity. Perhaps PointNet is focusing on a batch of points that seem interesting for some reason or 
have a pattern like another simpler class. In contrast, the 12 false negatives for the same dataset and 
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method contain 83% lamps or speed signs and hardly any trees. These had their classes correctly 
predicted with high confidence scores by the ML method and were therefore flagged as likely 
unchanged. The actual changes that were missed for these in this case could include significant tilts like 
those shown in Figure 11. 
 

 
Figure 11: Lamp 25 showing reference condition in gray and test condition in yellow/green. 

For the VB method the 5 false positives consisted of trees and fire hydrants. Perhaps the fire hydrants 
are too small and too many voxels are being created with the default 64x64x64 shape, thus making it 
more sensitive to variation with voxels containing few points. This issue will have to be addressed in a 
future update. The false negatives are almost all lamps with changes that included less spatial 
displacement, like rotation or tilts, but still had voxel intersects with most between 0.60 to 0.76.  
 

5.3 TOOLS AND SCRIPTS 

The workflow required the development of a set of scripts to implement its various portions. Python 
was chosen as a common thread to facilitate potential automation and the integration of the different 
components, most of which already exposed their capabilities through this popular programming 
language. Most significant programming contributions are intended to remain open source and be 
shared on a GitHub repository for the project. This way other developers or researchers may find some 
of the code useful for their own projects. 
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The CARLA Simulator requires use of its Python API to control the path of simulated autonomous 
vehicles, sensor placement and parameters, and frequency or format of the generated data. As a result, 
we developed a custom Python script to execute this portion of the simulation process. The script was 
also modified as needed when required by the export process. Developers should compare this script 
with some of the standard samples   provided by the CARLA Simulator project to see if it more closely 
meets the needs of their intended application. It is still recommended to use the API documentation  for 
any type of customization. In addition, there is a Python script for preliminary merging and subsequent 
cropping around each asset location. Instead of very long scripts performing large portions of the 
workflow, we prefer to break those up into re-usable smaller scripts and functions that perform certain 
parts of the workflow. This should allow developers to more easily leverage these scripts within their 
own workflows, which will likely differ from this example. 
 
In support of the change detection analysis, developed code include several Python scripts 
implementing various recommended algorithms or for training machine learning modules. For the ML 
approach the PointNet implementation used for this work relied almost entirely on Python. The original 
code was customized to accommodate needs specific to our workflow and these changes will be shared 
by creating a fork from the original repository on GitHub. It may be better to use this fork than the 
original repository if developers intend to use their own input data. Closely related to this, several 
additional scripts were developed to prepare exported simulation data to be used with PointNet. These 
perform a range of tasks that include normalizing point counts, reshaping arrays, shifting coordinates 
and scaling, assigning classes, and bundling asset point clouds into H5 format files. For the VB method, 
several scripts or functions were developed to create voxel grid arrays, merge conditions for 
comparison, perform an intersect, and calculate resulting values.  
 
These scripts also record results of both the ML and VB processes in a GeoJSON file, by reading, adding, 
and population fields or attributes. Python scripts were also developed to help analyze the results by 
performing an F1 Score analysis. Some of the tasks include separating datasets into training and 
evaluation, assigning true positive, false negatives, etc. to each asset based on a given threshold, 
calculating precision and recall, and recording the results as CSV files. 
 
Some scripts help automate the integration of the simulation, analysis, inventory, and visualization 
components of the project. The focus of this integration would mostly be in identifying analysis results 
for managed asset features and appropriately editing the geospatial database to reflect the changes 
detected during the analysis. The final portion of the project consists of a web application to visualize 
the contents of the infrastructure asset database and point cloud results. The application is based on 
JavaScript mapping libraries like OpenLayers and Cesium JS as part of the Potree viewer. Some of the 
Python scripts used and that are already on GitHub are listed in Table 3. These are likely to be updated 
in the future and could include file name changes. Other files are anticipated to be added to the 
repository on a regular basis in the near-term. 
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Script File Description 

crop.py Crops point cloud around each asset point 

f1_score_analysis.py Takes geojson with attributes and performs F1 score analysis 

join_ml_eval.py Incorporates PointNet CSV results into geojson 

merge_ply.py Merges PLY files exported from CARLA Simulator 

normalize_points.py Translates coordinates and scales points to normalize shapes 

obj_to_ply.py Convert 3D model object to mesh or point cloud 

process_h5.py Labels and loads point clouds into HDF5 files for PointNet 

process_pcd.py Performs voxel grid intersect analysis 

split_geojson.py Splits a geojson into two random by a given ratio 

Table 3: Lists some of the script files in the GitHub repository which were developed as part of the workflow. 

 

6 CONCLUSION 

 
When generating the point cloud data, we needed to have a sense of how to minimize gaps in the point 
cloud data. For a single vehicle this was a function of speed and how often to export a simulated point 
cloud snapshot. One way to do this was to slow the vehicle down and export a point cloud every 20 
frames or so to generate a reasonably dense point cloud with few gaps that worked for our purpose and 
based on hardware limitations this was our best option. If not limited by hardware, the more realistic 
approach would be to have multiple vehicles moving around and concurrently exporting the LiDAR. 
Using either method still required the preliminary merging of the exported PLY files, which aggregates 
the point cloud, but removing duplicate points too minimize file size. When merged the point clouds for 
an area the size of our study area and with a good point density was around 850 MB. These two export 
methods reflect the difference between a dedicated and robust platform like the Pegasus 2 or a current 
automated vehicle sensor like a Velodyne16 option. In practice, if the platform is moving fast and the 
sensor is low resolution then there will be a greater need to aggregate exported data from multiple 
vehicles to create a denser point cloud. However, research in this very competitive field means that 
improved17 and cheaper18 sensors producing denser point clouds could decrease the need to aggregate 
data. 
 
The synthetic nature of our point clouds generated in a simulated environment could be a factor 
affecting the performance of both methods, which may favorably impact the results from the VB 
approach. For example, our synthetic point clouds contain minimal noise, with potential interference 
being limited to moving actors like vehicles and pedestrians. Although it is difficult to replicate the 
entropy of real systems in our simulated environment, we could introduce additional noise to the point 
clouds during post-processing by adding slight shifts, jittering of points, or introducing additional actors. 
It would be helpful to determine the exact impact this issue would have on the results, but the fact that 
realistic moderate noise would still be a relatively small number of points that impact may not have a 
huge effect on our current conclusions. 
 

                                                           
16 https://velodynelidar.com/ 
17 https://arstechnica.com/cars/2018/11/why-millions-of-lasers-on-a-chip-could-be-the-future-of-lidar/ 
18 https://arstechnica.com/cars/2018/01/driving-around-without-a-driver-lidar-technology-explained/ 
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One major advantage of our ultimate goal of using the change detection analysis to identify likely 
changes to prioritize further inspection of the assets is that any positive results are a gain. This means 
that even if only half or a quarter of the actual changes are detected, it is still helpful for prioritizing 
further confirmation. Nevertheless, increased accuracy of detection is ideal as it lowers the overall the 
effort needed to update the asset inventory data. The results were not perfect, but either method or a 
combination of both can help designate the bulk of the features as either likely or unlikely to have 
experienced a significant change. At the very least, it will help inform the decision on how to prioritize 
further manual inspection through other sensor data or field inspections. In this regard, the ML 
approach had results that were not ideal, but still helpful and it could potentially be improved through 
some workflow changes or customization. The results from the VB method were very encouraging and 
could be applied in a production environment if they still hold up to confirmation with non-synthetic 
point cloud data. In practice it could be applied by running point cloud data through the model workflow 
in combination with the GIS asset inventory. Once the geospatial features have fields populated with a 
likelihood of changes detected, an analyst would review the ones flagged, confirm it by corroborating it 
from aerial imagery or otherwise provide that priority data to a field crew for further inspection and 
follow their regular asset maintenance workflow. Fundamentally, our results suggest that leveraging 
point cloud data for this type of change detection is viable, but there is room for improvement.  
 
This work could potentially be improved in several ways, and further research is required to more 
precisely determine the factors contributing to the apparent differences between the two methods. On 
the simulation side, the project used CARLA version 0.8, but it has been updated to version 0.9 which 
included a reworked API with new virtual LiDAR sensor system that may provide improvements to the 
quality of the generated point clouds. It also brings better support for using GIS data as a starting point 
to create new environment models. This would help in creating a study area environment based on real 
world locations. On the change detection side and starting with the ML method, we need to examine 
new ways to improve its performance. One potential improvement would be to use a more granular 
classification scheme by removing the asset class groupings and assign a class per asset feature instead 
of type, this will perhaps help the training model to save more specific information on each asset. The 
downside of this would be that now with 200 classes instead of 25 the training would use even more 
processing power, and this is for a method already inefficient when it comes to hardware resources, 
especially when compared to the VB method. We could also test if cleaning the reference condition 
point clouds and or adding more complete asset models as a reference has any positive impact on the 
results. Ultimately, if these additional efforts do not significantly improve the performance of the 
PointNet ML method, there are other ML algorithms available that could also be tested. 
For the VB approach the next step would be introducing more variance in the synthetic point cloud by 
adding more distortions in post-processing to better simulate real world in noise in point clouds. This 
brings up to the next major task for any method to acquire real point cloud data for a small area with 
before and after conditions to test our workflow. Another possibility is to incorporate RGB color values 
into our comparison to be able to detect changes such as the writing on a sign and whether this has any 
advantage over just using an image. 
 
The experience with the many open source tools used for this project was quite positive, whether the 
tool was familiar or new. The CARLA Simulator performed very well once compiled and its very active 
development keeps making it better with every new release and it should be well supported in the 
foreseeable future. The same applies to Open3D. It has great performance and its active development is 
ongoing although at a slower pace than CARLA. CloudCompare was also very useful for visualization and 
some point cloud calculations, but it takes a lot of memory with larger point clouds. The CloudCompare 
open source project is even older, more stable, and mature than either CARLA and Open3D and should 
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also be supported well into the future. The same can be said of QGIS, Visual Studio Code, and 
TensorFlow, which are solid tools with a bright and active future. PointNet is static, but the authors also 
have a PointNet++ project with additional capabilities, but the repositories are not regularly updated. 
Python, of course, is extremely popular with widespread use and will likely continue to attract 
developers that create even more modules. PyntCloud was the only tool used with a major role that is 
not actively developed since it is such as small and obscure project and the original developer is focused 
on other things. 
 
Overall the project had many components and was perhaps too ambitious given the time constraints, 
unknowns, and their relative complexity. The project deliverables ended up having a somewhat reduced 
scope, but my initial goals may have been too broad. Some of the major factors contributing that were 
time-consuming technical challenges setting up unfamiliar technologies. These included some difficulty 
compiling the CARLA Simulator as needed for editing in the UE4 Editor, problems finding point cloud 
libraries that were able to perform the voxel intersect, finding and implementing a machine learning 
method, among other similar challenges.  Despite that, the whole experience was positive, and still 
enjoyable and I learned some new things. I encountered new Python modules I had not used before like 
PyntCloud, and libraries like Open3D, managed to get an introduction to machine learning, and found 
many other tools that I may use in the future. 
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