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INTRODUCTION

Why forecast hazelnut production?
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OREGON

Named as state nut in 1989

due to its historical and
economic significance

FAST FACTS

GLOBAL

Globally, hazelnuts rank 5th overall for tree nut
production (behind the pistachio)

BEYOND

The recent development of

blight resistant cultivars will
see planted acreage increase

POLLINATION

Hazelnuts pollinate in

the winter as opposed
to the spring
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OBJECTIVES

What are the goals of this study?



“Forecast hazelnut yield
(tons/acre/year) in Oregon's
Willamette Valley using various
traditional regression methods and
machine-learning-based
counterparts”

No.1- PRIMARY

OBJECTIVES

“Perform predictions using the

Python programming language
within a novel Jupyter
notebook”

No. 2 - SECONDARY
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"~ BACKGROUND

List of terms and other art
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TRADITIONAL REGRESSION

Autoregression (AR) Autoregressive Moving Average (ARMA)
p p q
Xe=c+Y o Xii+e Xe=ct+er+ Y 0iXe—i+ > bier
i=1 1=1 7=1
AR is a time series model that uses the dependent relationship The ARMA describes a weakly stationary stochastic time series
between an observation and some number of lagged in terms of two polynomials and combines an autoregressive
observations. model with a moving average model.
Moving Average (MA) Autoregressive Integrated Moving Average (ARIMA)

!
Xe=p+er+0ie1+ -+ 0get— o . 4 ,
a et Ea 1=l | X = (143600 | &
=1 i=1

A MA model uses the dependency between an observation and

a residual error from a moving average model applied to lagged , . ‘ , ,
variables ARIMA attempts to ‘explain’ a given time series based on its

2 own past values, that is, its own lags and the lagged forecast

\ errors, so that equation can be used to forecast future values.



Long Short Term
Memory networks
(LSTM)

LSTMs are a special kind of
recurrent neural network (RNN),
capable of learning long-term
dependencies (Hochreiter &
Schmidhuber, 1997).

Approaches

XGBoost Open-source
gradient boosting
library.

Gradient boosting is a machine
learning technique for regression that
produces a prediction model from an
ensemble of weak prediction models

(Chenet al. 2016).

| Machine-Learning-Based ‘

Tree-base pipeline
optimization tool
(TPOT)

TPQT is a Python Automated
Machine Learning tool that optimizes
machine learning pipelines using
genetic programming (Olsen et al.
2016).



Performance Metrics

S (actual; — predicted;)
" .

ForecastBias Bias =

SO lactual; — predicted;)|

Mean Absolute Error (MAE) MAFE =
n

T

1 - 2
Mean Squared Error (MSE) MSE = " Z(actuali—predzctedi)

1=1

n ' - actual:)?
Root Mean Squared Error (RMSE) RMSE = \/Zzzl(p'r'edzctedz aciitel)
n

(AL g .
Symmetric Mean Absolute Percentage Error (SMAPE) \ApPE — 1V & 3 |predictedy a@;ualﬂ
no (|actualy| + |predictedy|) /2
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Create
Python
Environment

Data Munging
[Wrangling]

(Import into
Pandas DataFrame(s))

Perform
Forecasting

-

Evaluate Model
& Predictions

. Auto-regression (AR)
2 Muving—ﬂérage (MA)

‘ 1.
23

Use Miniconda package manager
Run:
conda env create -n <environment
name> -f environment.ym|

Historical Hazelnut
Yield Data

dMuving-AveragE >
~ with Exogenous Regressors

ML Algorithm

3. Auto-régressive Moving-Average
(ARMA)

4, Autofregressive Integrated Moving-
Average (ARIMA)

5. Séason Auto-regressive Integrated”
Moving-Average (SARIMA)

6. _Season Auto-regressive Integrated

(SARIMAX)
7. XGBoost ML Algorithm -
8. Long-Short Term Memory (LSTM)

’-n\_ % /

.

METHQD‘ LOGY

9. Pipeline Optimized (TPOT)
. Regressor

T a

J',

‘rdPIotIy Graphs

A J
- P
Forecast Bias ,

Mean Absolute Error (MAE)

Mean Squared Error (MSE)

Root Mean Squared Error (RMSE)
Symmetric Mean Absolute Percentage

Error (SMAPE) )/
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HISTORICAL
HAZELNUT
PRODUCTION

The hazelnut production data from 1927-2008 was
obtained from the National Agricultural Statistics
Service (NASS), Agricultural Statistics Board, US
Department of Agriculture




Exploratory Data Analysis (EDA) Snippet of Pandas DataFrame within Jupyter Notebook of Hazelnut Yield data

2 - # read in hazelnut data cobtained from the Naticnal Agricultural Statistics Service (NASS), Agricultural Statist
< >
out[2):
bearing yield per acre utilized production production - meat production - in-shell production - shelled price per ton value of production (1k
(ac) (tons) (tons) (tons) (tons) (tons) (dollars) dollars)
year
1927 0.0 0.00 60.0 0.0 0.0 0.0 320.0 19.0
1928 0.0 0.00 200.0 0.0 0.0 0.0 380.0 76.0
‘ ) 1929 2000.0 0.10 200.0 0.0 0.0 0.0 300.0 60.0
\\ 1930 2500.0 0.12 300.0 0.0 0.0 0.0 340.0 102.0
\\ 1931 3100.0 0.12 380.0 0.0 0.0 0.0 250.0 95.0
. LIEI Y| df_hazelnut.describe ()
\ outf3):
bearing (ac) yield per acre utilized production production - meat production - in-shell production - shelled price per ton value of production (1k
(tons) (tons) (tons) (tons) (tons) (dollars) dollars)
count 82.000000 82.000000 82.000000 82.000000 82.000000 82.000000 82.000000 82.000000
mean 18307.073171 0.602195 13285.853659 2137.878049 7737.707317 5241.975610 603.426829 11198.890244
std  8078.476431 0.387983 12191.606802 2575.789379 6722.945327 6398.339941 378.754490 15566.805948
min 0.000000 0.000000 60.000000 0.000000 0.000000 0.000000 200.000000 19.000000
25% 15350.000000 0.380000 5387.500000 239.250000 4002.500000 661.250000 344.500000 1955.750000
50% 18100.000000 0.490000 9125.000000 1107.000000 5965.000000 2820.000000 514.000000 3765.500000
75% 25925.000000 0.747500 17875.000000 3477.500000 9700.000000 6687.500000 785.250000 15096.500000
max 29200.000000 1.710000 49500.000000 12000.000000 32500.000000 30300.000000 2240.000000 75480.000000



Hazelnut Production - Yield

Eq:y =0.013437163287295488x - 25.835423645802646 o— Yield
R* = 0.6802995120434835
P value: 1.6594517492423717-21 ESOS
- [ L (R A (O | D B 95% Confidence (Upper)
— w1 3 el L s 95% Confidence (Lower)
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---------- the linear relationship between hazelnut yield and year.
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DATA CONTINUED

V
~ HISTORICAL CLIMATE

Weather data for the same period was obtained from the National
Centers for Environmental Information of the National Oceanic and
Atmospheric Administration (National Centers for Environmental
Information (NCEI)
The climate data used are as follows:
Yearly averages of:
e maximum temperature
e extreme maximum temperature
e minimum temperature
e extreme minimum temperature
e average temperature
e cooling degree days (base 65)
e heating degree days (base 65)
e total precipitation
e highest daily total of precipitation
Also, yearly sums of:
e cumulative cooling degree days
e cumulative heating degree days
e cumulative total precipitation
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RESULTS

How did the forecasting methods perform?
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Yield (tons/acre) predictions forecasted for each method.

Name

2009

2010

201

2012

2013

2014

2015

2016

2017

2018

Actual
AR

MA
ARMA
ARIMA
SARIMA
SARIMAX
XGBoost
LSTM
Pipeline Optimzed Regressor
OLS

1.640000

1.352874

0.706637

1.315397

1.335782

1.261183

1.360552

0.947520

1.833676

1.029603

1.085600

0.970000

1.216064

0.601988

1.183635

1.234448

1.098573

1.180230

0.663889

0.924083

0.696848

1.099000

1.310000

1.334589

0.601988

1.263407

1.340632

1.322436

1.125498

1.215941

1.659814

0.740140

1.112400

1.280000

1.250829

0.601988

1.202202

1.291937

1.061422

1.185502

0.763554

0.576330

0.741205

1.125800

1.500000

1.319576

0.607988

1.235059

1.353530

1.451809

1.355516

1.344026

1.234864

1.136178

1.139200

1.200000

1.288175

0.601988

1.205263

1.334850

1.262425

1.333329

0.555659

0.778374

1.371373

1.152600

0.910000

1.318609

0.601988

1.217305

1.374000

1.365675

1.452742

1.509254

1.623380

1.530232

1.166000

1.190000

1.310568

0.601988

1.201513

1.371288

1.216762

1.308704

1.436868

0.716330

1.069919

1.179400

0.800000

1.325383

0.601988

1.204343

1.398811

1.256021

1.330368

1.106195

1.453801

1.454029

1.192800

1.160000

1.327403

0.601988

1.194818

1.404474

1.344433

1.349351

1.580379

1.133056

1.170473

1.206200
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Plot of forecasting
predictions. The actual
“‘expected” values are seen in
navy blue. Note the
alternating nature of the
results. Most of the models,,
with the exception of the MA
were able to approximate the
oscillation phenomenon,
known as ‘alternate bearing
cycle’ common to nut and
other perennial fruit crops.



Differences of predicted and actual values for each model. \
Cells that are marked either green or red correspond to G
predicted values as being closest to or furthest from &
expected, actual value for each year, respectively.

2009 2010 2011 2012 2013 2014 2015 2016

2017

2018

AR -0.287126 0.246064 0.024589 -0.029171 -0.180424 0.088175 0.408609 0.120568

MA -0.933363 -0.368012 -0.708012 -0.678012 -0.898012 -0.5%8012 -0.308012 | -0.588012

ARMA -0.324603 0.213635 -0.046593 -0.077798 -0.264941 0.005263 0.307305 0.011513

ARIMA -0.304218 0.264448 0.030632 0.011937 -0.146470 0.134850 0.464000 0.181288

SARIMA -0.378817 0.128573 0.012436 -0.218578 -0.048191 0.062425 0.4556/5 0.026762

SARIMAX -0.279448 0.210230 -0.184502 -0.094498 -0.144484 0.133329 0.542742 0.118704

XGBoost -0.692480 -0.306111 -0.094059 -0.516446 -0.155974 -0.644341 0.599254 0.246868

LSTM 0.193676 -0.045917 0.349814 -0.703670 -0.265136 -0.421626 | 0.713380 -0.473670

Pipeline Optimzed Regressor -0.610397 -0.273152 -0.569860 -0.538795 -0.363822 0.171373 0.620232 -0.120081

OLS -0.554400 0.129000 -0.197600 -0.154200 -0.360800 -0.047400 0.256000 -0.010600
ik )

0.525383

-0.198012

0.404343

0.598811

0.456021

0.530368

0.306195

0.653801

0.654029

0.392800

0.167403

-0.558012

0.034818

0.244474

0.184433

0.189351

0.420379

-0.026944

0.010473

0.046200



Cells, either green or red, correspond to
models having the lowest or highest
error for the given metric.

Name

Bias

MAE

MSE

RMSE

sMAPe

AR

MA

ARMA

ARIMA

SARIMA

SARIMAX

XGBoost

LSTM

Pipeline Optimzed Regressor

OLS

-0.108410

0.583550

-0.026290

-0.147980

-0.068070

-0.102180

0.083670

0.002630

0.102000

0.050100

0.207750

0.583550

0.169080

0.238110

0.197190

0.242770

0.398210

0.384760

0.393220

0.214900

0.067030

0.392280

0.048870

0.086970

0.066450

0.082970

0.197880

0.206670

0.205090

0.074130

0.258900

0.626320

0.221070

0.294910

0.257780

0.288050

0.444840

0.454610

0.452870

0.272270

0.174960
0.622260
0.144670
0.196900 |
0.167860
0.201970
0.364500
0.343760
0.348730

0.182540



Errors were calculated using variety of
metrics; Bias, Mean Absolute Error

(MAE), Mean Squared Error (MSE), Root Faregasting MacelsElyars

Mean Squared Error (RMSE) and —@— Actual
Symmetric Mean Absolute Percentage 0.6 /:;\
Error (SMAPE). Bias is the sum of the AR
difference of expected to predicted - —A— ARIMA

values divided by the number of —@— SARIMA

0.4 hd —@— SARIMAX
observations. A bias other than zero /N o~ —3— XGBoost
LSTM
suggests a tendency of the model to 03 e —
over forecast (negative error) or under \ —4— ois
)|

forecast (positive error). MAE is the 02
sum of the absolute difference of
expected and predicted values divided
by the number of observations. MSE is 0
the sum of the squares of the
difference of expected to predicted
values divided by the number of e

observations. RMSE is the root of MSE. ias MAE W5 RMSE shlAPe
SMAPE is an accuracy measure based Efror Jype

. . ' v — L4
on percentage (or relative) errors. / / _—T17 \\
L — :
/.'" = | \ /Q | ~

Amount of Error (%)

0.1

-0.1
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DISCUSSION/CONCLUSION

Takeaways and a look to the futu




Almost all methods successfully
approximated the alternate bearing
cycle pattern (as having the shape of
a high then low prediction), with the
notable exceptions of ARIMA and MA.
These approaches produced almost a
linear output.

ALT.

BEARING

SURPRISES

ARMA

TAKE-AWAYS

The LSTM model produced the best
predictions for two of the ten years
forecast, yet also made two of the
poorest; within 0.94% to 56.3% of

expected values.

ML

GROWING
PAINS

The ARMA method had the lowest errors and
made the most accurate (nearest to actual) results
of three of the ten years predicted. Overall, yield
predictions using the ARMA model were within
0.44% to 40% of the actual value and within 22% of
real yields for nine of the ten years forecast.

EXOGENIC
VARIABLES

Given that the yield appears to e
become increasingly variable
following 1990, it is notable that the

forecasting meth

ods o

performed as well as they did.

VOLATILE
DATA

The SARIMAX and Pipeline Optimized
Regressor methods leveraged climate
data as exogenic inputs and performed
better than expected, nearly fitting the
alternating nature of the data.

PYTHON

PERFORMS

A positive conclusion of this study
illuminated that time-series forecasting is
possible without the need for expensive
software or specialized knowledge. Python
programming is immensely powerful yet
very approachable.



FURTHER STUDY

S .
o
g
EXOGENIC EVER MORE DATA .
FACTORS CHANGING Al ALWAYS HELPS ’
More effort needs to be Time-series analysis and Additional data in the form of
spent on the effects of forecasting using machine- global crop yields and climate
exogenic factors such as the learning-based approaches records could provide the basis
alternate bearing cycle of is constantly evolving with for a more complete and thereby
perennial crops and new, better performant increasing accuracy in the
changing climate conditions. methods being developed resulting predictive model.
continually. @
© / ®
TARGETED REMOTE SENSING CURRENT YEAR
INPUTS AUGMENTATION TRUTH DATA
The model may benefit from including A battery of vegetative Annually adding yield data

Informative agronomy-specific data
(such as soil type, nutrients, pH,

electroconductivity, etc.) coupled with
the other phenological information (date
of bloom, duration of pollination, etc.) to

establish a diverse dataset.

indices could be performed on
remotely sensed multispectral
satellite imagery at specific
developmental stages; all aspects
of crop health could be evaluated
and included in a more complete
model

as “truth” and refining the
forecasting algorithm could
make for a more accurate
model



szzzziiz. TRADITIONAL AND MACHINE-LEARNING-BASED

Hii”  APPROACHES WERE EVALUATED

sziin A REASONABLY ACCURATE PREDICTION COULD BE MADE
#iiE  ON SPARSE DATA WITH SIGNIFICANT SEASONALITY

szzziiz. PYTHON PROGRAMMING AND JUPTYER NOTEBOOK

#ii  CONTAINERS ARE A VIABLE FRAMEWORK FOR FORECASTING
sz THE JUPYTER NOTEBOOK CAN BE REUSED AND ADAPTED AS A

SHEEEaEE TEMPLATE FOR FURTHER STUDY






