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ABSTRACT 
$15-20 billion is projected to be spent on restoration projects in the next several decades along the 
northern Gulf Coast. There is a need for efficient monitoring procedures that capture information from 
this endeavor on both the landscape scale and the local scale. Recent developments in Unmanned Aircraft 
Systems (UAS) have sparked interest in the ability of these systems to capture remotely sensed data to 
meet monitoring needs in coastal wetlands. This research demonstrates the ability of UAS technology to 
collect hyperspatial, multispectral aerial images and produce 2-dimensional orthomosaics and 2.5-
dimensional digital surface models in a Spartina patens dominated intermediate coastal marsh. Object- 
Based Image Analysis techniques were used to classify species composition and quantify average plant 
height, land-water interface, and Normalized Difference Vegetation Index (NDVI). Model results were 
validated with on-the-ground CRMS vegetation surveys.  A case study of CRMS station 0392 in 
Terrebonne Parish is presented, including results of the spatial analysis and some logistical constraints 
and lessons learned from operating a UAS in the coastal environment. These methods can be readily 
applied in multiple coastal settings of different habitat types, and can support other project operations and 
monitoring needs. Widespread deployment of such a method would be an important step towards a 
comprehensive monitoring program of coastal restoration and would provide a useful tool to study how 
coastal wetland ecosystems respond and adapt to human interventions.  
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I. Background and Rationale 
Louisiana’s coastal wetlands account for roughly 22% of the total coastal wetland area of the lower 48 
conterminous United States (Gosselink, 1984) and provide protection for infrastructure that supplies 90% 
of the nation’s outer continental oil and gas, 20% of the nation’s annual waterborne commerce, 26% (by 
weight) of the continental U.S. commercial fisheries landings, winter habitat for five million migratory 
waterfowl (Coastal Protection and Restoration Authority of Louisiana 2012) The land loss crisis in 
coastal Louisiana has claimed 4,833 square kilometers of land from 1932 to 2016 (Couvillion et al. 2016) 
with the potential to lose up to an additional 1,750 square miles of land (Coastal Protection and 
Restoration Authority of Louisiana 2012) 

Land loss in Louisiana is driven by both natural and human factors. Levees and floodgates on the 
Mississippi River have deprived the coastal ecosystem of the fresh water and sediment it needs to survive 
(Day et al. 2000).  Dredging canals for oil and gas exploration and pipelines distrupts natural hydrology, 
weakens marshes, and allows salt water to move inland (Turner 1997).  Deepwater Horizon oil spill and 
other environmental impacts have directly and indirectly impacted Louisiana’s coast (Baker, Steinhoff, 
and Fricano 2016). 

These landscapes are important for various reasons.  They are naturally occurring and therefore afforded 
due respect simply because they exist.  From an anthropogenic perspective, wetlands offer valuable 
ecosystem services (Costanza et al. 1997; Brooks et al. 2007).  Many of the proxies for valuing ecosystem 
services involve evaluating the quality and quantity of habitat to support various fish and wildlife 
(Freeman III 1991; Bell 1997).  Coastal wetlands reduce the effects of storm surge and waves on coastal 
communities. Storm surge reduction models are often based on the location and amount of land in 
proximity to population centers, type of vegetation, and land elevation (Costanza et al. 2008).  The 
Wetland Morphology Model of the Louisiana Master Plan for a Sustainable Coast was used to estimate 
project effects on carbon storage potential (Coastal Protection and Restoration Authority of Louisiana 
2012). Carbon storage in wetlands is considerable, plays a role in global carbon budgets, and varies with 
the type of wetland, the acreage, and the annual vertical accretion of soil, and aboveground biomass 
(Mitsch and Gosselink 2007; Barbier et al. 2011).  Nutrient uptake and removal in both sediments and 
wetland plants is beneficial (Craft 2007; Craft et al. 2009). 

II. Introduction to Research Problem 

Coastal wetlands monitoring 
Current monitoring programs for coastal vegetation in Louisiana include two main components: a 
coastwide helicopter survey and the Coastwide Reference Monitoring System. Coast-wide Reference 
Monitoring System (CRMS) stations are located throughout the Louisiana coastal zone and serve as the 
ambient coastal wetland monitoring network for the region (Steyer 2010). These CRMS stations have 
200m x 200m on-the-ground sampling locations for species cover, plant height, and land water interface, 
and will be used as a reference dataset for this project.  Additionally, the State of Louisiana and US 
Geological Survey use coast-wide helicopter surveys along north-south transects spaced 3 km apart with 
sampling sites located at 0.8 km along the transects to monitor large-scale changes in wetland vegetation 
(Sasser et al. 2014).  While hovering over a sampling site, ocular estimates are used to record the 
dominant species present and to determine the percent of total cover for each species using a Braun-
Blanquet cover scale (R = singular, Plus = <1, 1 = 2-5%, 2 = 6-25%, 3 = 26-50%, 4 = 51-75%, 5 = 76-
100%).  These surveys are costly and are currently reproduced once every 7 years. 

Traditional remote sensing techniques have been used to develop vegetation maps by species, biomass 
estimates, and marsh health indicators (NDVI etc.).  The Ramsar Convention on Wetlands supports the 
development and application of remote sensing and GIS to fill gaps in baseline wetland inventories 
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(Rebelo, Finlayson, and Nagabhatla 2009).  European Remote Sensing (ERS) satellite radar data has been 
used to estimate biomass information (Moreau and Le Toan 2003).  Hyperspectral image analyses have 
mapped salt-marsh vegetation (Belluco et al. 2006) and identify invasive vegetation in a wetland deltaic 
ecosystem (Hestir et al. 2008).  Gilmore et al. (2008) examined the effectiveness of using multi-temporal 
satellite imagery, field spectral data, and LiDAR (Light Distance and Ranging) top-of-canopy data to 
classify and map the common plant communities of the Ragged Rock Creek marsh, located near the 
mouth of the Connecticut River.  Multispectral image processing has identified vegetation species in 
rangeland environments (Laliberte and Rango 2011).  Couvillion et al. (2011) used historical surveys, 
aerial data, and satellite data to track landscape changes and coastal land loss from 1932 to 2010.  More 
recently, object-based approaches are being refined to extract coastlines from high resolution satellite data 
(Giannini and Parente 2015). 

Unmanned Aircraft System applications in coastal research 
Unmanned Aircraft System (UAS) technology has expanded in recent years for various survey and 
mapping applications. In the late 1970s, Przybilla & Wester-Ebbinghaus (1979) first used a fixed wing 
remotely controlled aircraft in photogrammetry experiments.  In 2004, Eisenbeiss, Lambers, & Sauerbier 
(2005) were the first to create a high-resolution digital terrain model using a commercial low-cost model 
helicopter with semiautomated navigation.   

UAS technology has developed quickly since the turn of century and has witnessed unprecedented 
technological developments in computing, communications, navigation, control, and optics (Pereira et al. 
2009).  Chong (2007) used high definition video to map local beach erosion.  Lejot et al. (2007) used very 
high spatial resolution imagery to map channel bathymetry and topography from a UAS platform.  Light-
weight multispectral sensors for UAS are being used increasingly (Laliberte et al. 2011).  Niethammer, 
James, Rothmund, Travelletti, & Joswig (2012) used low-cost small digital camera to map landslide 
topography and create reasonably accurate digital terrain models.  Multispectral and hyperspectral 
imagery are regularly being used to image, classify, and map wetlands (Phinn, Stow, and Zedler 1996; 
Chust et al. 2008; Yang and Artigas 2010; Lechner et al. 2012; Klemas 2013).  UAS are now widely used 
in a host of environmental applications, such as coastal wetland mapping, LIDAR bathymetry, flood and 
wildfire surveillance, tracking oil spills, urban studies, and arctic ice investigations (Klemas 2015). 

Comparing UAS and other methods 
Comparing traditional ground surveys, aerial photogrammetry, and satellite data analysis is not 
straightforward.  Each method has a niche and a best-fit for project application.  There are various 
tradeoffs to consider such as cost, area covered, resolution, and the potential for high temporal sampling, 
etc.  Manned aircraft overflights, for example, can be costly (Klemas 2013). UAS technology, however, 
can potentially drop the cost dramatically. GPS-guided UAS have the capacity to obtain very high spatial 
resolution (1-10 cm) imagery of specific landscape features with revisit times determined by the operator 
as opposed to fixed satellite revisit times (Lechner et al. 2012). 

For coastal wetland monitoring in Louisiana, there are several examples of remote sensing data types, at 
various spatial scales, that can fill in the data gaps between the helicopter coastwide survey and the 
CRMS network stations.  These include LANDSAT satellite imagery (30m), Worldview satellite imagery 
(3m), traditional aircraft captured aerial photography (1m), and UAS captured aerial photography (2cm).  
Figure 1 includes an examples of a typical aerial photography base map with 1 meter resolution compared 
to 2.5 cm resolution UAS imagery collected in the same location. 
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Figure 1: One-meter resolution aerial photography (below) collected as part of the Coastal Wetlands 
Planning, Protection and Restoration Act program (CWPPRA 2008) and UAS imagery collected in 2106 
at the same location (above). 
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UAS technology has the additional advantage over traditional methods by allowing flexible deployments 
capable of acquiring both high-temporal and hyperspatial resolution data (Niethammer et al. 2012).  
Recent developments in UAS have sparked interest in the ability of these systems to fly the current 
Louisiana coastwide helicopter transects and to collect hyperspatial aerial images of the sampling sites.  
At present, the helicopter survey is conducted once every seven years by a crew of four, so a successful 
implementation of a UAS survey could increase the temporal resolution of the dataset and potentially 
reduce the cost of deployment.  The ability to capture near-infrared reflectance of the sampling locations 
could also provide information on the health and vigor of the sampled vegetation using the Normalized 
Difference Vegetation Index (NDVI), which would be an improvement over current methods.  Additional 
improvements that UAS imagery could provide include the ability to compute a Digital Surface Model 
(DSM) and to provide source data for image analysis techniques that could classify the collected imagery, 
automate the species identification process, and calculate various metrics that approximate ecosystem 
services. 

III. Research Objective 
The goal of this project is to investigate the use of UAS and hyperspatial imagery collections for 
calculating species composition and ecosystem service metrics in a coastal Louisiana grass-dominated 
marsh. Specifically, the researchers were interested in improving monitoring techniques with UAS 
technology and developing methods to calculate biomass, productivity, species composition, and a land-
water interface model. Such improvements would be important steps towards a comprehensive 
monitoring program of the Louisiana coastal zone and would provide useful tools to study how coastal 
wetland ecosystems respond to human perturbations. 

A pilot project was conducted in Coastal Louisiana to collect hyperspatial/multispectral aerial imagery 
from a UAS to determine the feasibility of the technology for vegetation mapping and landscape analyses 
of ecosystem service metrics.  Specifically, the team addressed the following research question: Can UAS 
hyperspatial imagery be used to classify species composition, model the land-water interface, and 
quantify certain ecosystem services, specifically the Normalized Difference Vegetation Index (NDVI) and 
plant height, in a Spartina patens dominated brackish coastal marsh environment?   

To accomplish the project mission, the team had the following general workflow (Figure 2): 1) collect 2.5 
cm resolution UAS imagery using red-green-blue and near-infrared sensors of a 1km2 area in a coastal 
Louisiana marsh, 2) create georeferenced orthomosaic and DSM raster datasets, 3) use Object-based 
image analysis to model the land-water interface, dominant species distribution, plant height, and NDVI. 

IV. Fieldwork 
The project site was a degraded oligohaline wiregrass (fresh to intermediate) marsh located in Terrebonne 
Parish, Louisiana along the Northern Gulf of Mexico, north of Lake Boudreaux, and east of Bayou Grand 
Calliou (Figure 3). The site is part of the Terrebonne Bay drainage basin in the Mississippi River Deltaic 
Plain. The area is prone to high rates of subsidence due to compaction of Holocene alluvial sediments and 
movements of nearby faults. With the additive effects of eustatic sea level rise, nutria herbivory, and 
hydrologic modifications due to canal and embankment alterations in the landscape, this area has some of 
the highest rates of coastal land loss in the world.  One benefit of this study area is that there is one long-
term monitoring site belonging to the Coastwide Reference Monitoring System (Steyer 2010) within the 
project boundary. This station has on-the-ground sampling locations for species cover and was used as a 
reference dataset.  The 1km2 area around CRMS Sites 0392 was the area of the data acquisition for this 
project (Figure 3). 
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Figure 2: Project workflow diagram. 

CRMS site 0392 was chosen with permission from the state governing agency and private landowner.  
Even though the site was in Class G airspace, the pilot in command coordinated with the Houma-
Terrebonne Airport (HUM) because the site was under the Class E airspace surrounding HUM.  All flight 
operations were compliant with the Federal Aviation Authority (FAA) Part 107 ruling, which incidentally 
was effective August 29, 2017. The fieldwork for this project was conducted August 29 and 30, 2017.   
 
The area of interest (AOI) was divided into 3 flight blocks.  Each block required approximately 35 
minutes to complete, which allowed 15 minutes of additional flight time for emergency maneuvers and 
travel to the landing location.  Because the AOI was over a coastal marsh, and because the marsh in 
question was highly degraded and broken, there was no logical landing location near the AOI.  An 
appropriate landing location was identified 4 km north of the AOI.  To maintain radio communications 
between the aerial rover and the ground control station, the project team chased the rover home to the 
landing location using an airboat.   
 
Ground control point (GCP) photo targets were evenly placed throughout all three flight blocks (Figures 3 
and 4).  The shared boundaries of the flight blocks also shared ground control targets.  The targets were 
vinyl sheets (2’ x 2’) with an iron cross pattern. The targets were fixed atop wooden stakes that were 
driven into the marsh and elevated so that the targets were visible over the marsh grass (Figure 5).  A 
center stake was driven in the middle of the target to create a tent effect and fix the location of the center.  
The center point was then surveyed in using high accuracy GPS equipment (Figure 6, horizontal accuracy 
= 1cm and vertical accuracy = 2cm).   
 
The team used a Trimble UX5 aerial imaging rover (Figure 7, http://uas.trimble.com/ux5).  Payload 
sensors include the Sony a5100 with a red-green-blue (RGB) sensor and a Sony NEX-5r with a near 
infrared-red-green (NIR) sensor.  The catapult launcher was secured to the bow of a research vessel and 
the UX5 was launched out over the water within the AOI.  A belly landing was used to bring the rover 
back to the ground.  This method has several drawbacks.  A clear area roughly 50m long and 30m wide is 
necessary in the event of a wind gust or other malfunction during landing.  The team could not find a 
suitable place with a large area of solid marsh grass within the AOI.  Public lands north of the AOI, near 
the public boat launch was chosen for landing as mentioned above.  Four flights were flown over the 
course of two days.  The results presented here represent two of those flights, both of which are from the 
same flight block.  One contains the RGB dataset and the other contains the NIR dataset. 
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Figure 3: Location map of the project site including one set of flight lines in yellow, ground control points 
in white/black, and the 1km2 area of interest (AOI) surrounding CRMS 0392.  The landing location is 4 
km north of the AOI in an open upland field.  
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Figure 4: Location of ground control point photo targets in black and white as well as the flight blocks in 
yellow and the 1 km2 buffer around CRMS 0392 in teal. 
 
 

 
Figure 5: Example of a ground control point photo target. 
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Figure 6: GPS Survey of a ground control point. 
 

 
Figure 7: Trimble UX5 aerial imaging rover used in this project. 
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V. Post-processing 
Trimble UAS Master Inpho Software (Figure 8; Trimble Navigation Limited, 2016) was the 
photogrammetric software used to process the UAS imagery and generate orthomosaic and DSM raster 
datasets.  Over 1000 images are collected per flight.  Each image has an approximate latitude, longitude, 
altitude, roll, pitch, and yaw value associated with it.  These initial approximations of the image’s external 
orientation were used by the software to extract tie point locations, i.e. those locations that could be 
identified in multiple photos.  The precise location of the ground control points (GCPs) were measured in 
all available images.  Each GCP is measured (located) within each available picture to refine the initial 
orientation and to tightly georeference the orthomosaics to a datum (See Figure 9).  After the absolute 
orientation process was completed, the root mean square error (RMSE) for the horizontal and vertical 
control was 2.40 cm and 2.42 cm, respectively.  The 95% confidence level for the horizontal and vertical 
control was 4.83 cm and 4.74 cm, respectively.  Final RGB, NIR, and DSM datasets are presented below 
in Figures 10, 11, and 12, respectively.  The ground sample distance was as low as 2.6 cm for the 
orthomosaic and 7.2 cm for the digital surface model.  These hyperspatial datasets allows a user to discern 
patterns and objects with detail.  Even the shape and size of a broadleaf blade can be observed and 
calculated. 
 
 
 

 
Figure 8: A screenshot of the Photogrammetry software Trimble UAS Master showing the wireframes of 
the raw NIR imagery, Ground Control Points, and orthomosaic overview. 
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Figure 9: A screenshot of the Georeferencing Editor and the GCP/Manual Tie Point Table showing the 
location of a ground control point 301 in image 7112. 

 

VI. Object-based image analysis 
UAS imagery has been analyzed using object-based image analysis (OBIA) classification methods in the 
past (e.g. Laliberte and Rango 2009; Laliberte and Rango 2011).  Originally developed for 1 meter aerial 
photography, the ability of the method to downscale to UAS imagery is encouraging.  With high 
resolution datasets, the spectral variance increases within target classes.  Spectral separation between the 
classes is therefore more difficult to specify and classify (Marceau et al. 1999; Blaschke 2010).  Similar to 
human interpretation, OBIA methods address these scaling issues by segmenting or grouping the finer 
pixels into image objects that are made up of multiple neighboring pixels sharing similar attributes such 
as spectral signature, texture, shape, and context to other objects (Blaschke 2010).  This makes 
classification of UAS imagery easier because the programmer is then tasked with finding commonalities 
by object (100’s to 1000’s of pixels) rather than individual (2-3cm) pixels.   

The goal of the OBIA in this study was the classification of marsh grass versus open water, the 
identification of dominant plant species, and the development of a Normalized Difference Vegetation 
Index (NDVI) surface model using hyperspatial, multispectral UAS imagery.  The first step in the 
analysis was to classify objects as either land or water and then to classify land objects into one of three 
vegetation categories: 1) Grass, Spartina patens), 2) Reed, Phragmites australis, 3) Other, a mix of 
Bacopa spp., Plucheas spp., Iva spp., and Baccharis spp.  Figure 13 demonstrates the outlines of objects 
identified in the UAS imagery.  The objects were delineated using Trimble eCognition Developer 
software (“eCognition Developer” 2016) based on similar spectral, texture, size, values as well as the 
context of other neighboring objects.  Based on the characteristics of objects that shared a common target 
classification, a rule set was developed to methodically classify objects into one of the three target classes.   
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Figure 10: RGB dataset generated from UAS imagery over the project site. 
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Figure 11: NIR dataset generated from UAS imagery over the project site. 
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Figure 12: DSM dataset generated from UAS imagery over the project site. 
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Figure 13: Objects outlined (above) and then classified (below).  Blue is the class Water, teal is the class 
Other, and orange is the class Grass. 

The reflectance values of the near infrared spectrum coupled with the hyperspatial resolution of the UAS 
imagery made the identification of the water objects fairly easy.  Using a simple threshold level, those 
objects with a mean near-infrared reflectance value less than 90 were classified as water (because water 
absorbs near infrared wavelengths).  For the dominant vegetation species identification, the algorithms 
focused primarily on height, texture, and greenness.  Because the common reed Phragmites australis is a 
tall, clumping species, this Reed class was primarily identified by height (i.e. objects that were taller than 
their surrounding objects).  The Other class was primarily identified by greenness because this class of 
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plants were generally greener than the surrounding grasses.  After classifying both the Reed and Other 
classes, the remaining objects belonging to the larger Land class were then classified as Grass. 

NDVI 
The reflectance index NDVI is regularly used in coastal and upland vegetation analyses to indicate the 
greenness and general health of the vegetation (Steyer, Couvillion, and Barras 2013; Carle and Sasser 
2016; Tucker 1979).  NDVI values were calculated for each pixel of the NIR orthomosaic as the ratio of 
the near-infrared and red reflectance (Tucker 1979).  Results from this analysis are presented in Figure 14.  
Note the highest NDVI values in the southeast corner of the project area.  This is a high marsh adjacent to 
a distributary channel, presumably with good tidal exchange and oxygenated soils.   

 

Figure 14: NDVI surface model of the project area. 

VII. Accuracy Assessment 

Standard vegetation assessment 
An accuracy assessment was then performed using two methods.  The first is a stratified random sampling 
in which a predetermined number of random x,y points were selected within each group (50 Water, 50 
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Grass, 20 Other, and 10 Reed).  The researchers then used the original UAS orthomosaics to determine if 
the model was properly classified at each point.  Results are presented as an error matrix in Table 1.  
Overall accuracy was 85% and the Kappa Coefficient was 0.78.  These values are within an acceptable 
range for traditional image analysis.  User’s Accuracy ranged from 67% for Other to 100% for Reed.  
Producer’s Accuracy ranged from 73% for Grass to 100% for Water.  This Producer’s Accuracy for 
Water is noteworthy because it means that the simple approach to classifying water, i.e. a single threshold 
of near-infrared reflectance, is satisfactory.  The fine-scaled, 2-6cm, delineation between the land-water 
interface is a significant improvement in coastal land loss mapping efforts.  Each 2-6 cm pixel is either 
land or water.  There is very little mixing of spectral signatures within UAS orthophoto pixels as 
compared to the mixing found in traditional 1 m aerial photographs (Figure 1).  As such, the land-water 
interface model is highly accuracy and reliable. 

 

Table 1: Error matrix demonstrating the results from the accuracy assessment of the object-based image 
analysis. 

Comparison with CRMS data 
Previously acquired field data from the CRMS site 0932 were then compared with the models generated 
for this project.  Specifically, the researchers compared predicted percent land versus measured percent 
land, predicted vegetation class versus observed vegetation class, and predicted plant height versus 
measured plant height.  CRMS data were collected at three subsample sites along a transect within the 
CRMS 0932 boundary (Figure 15).  The subsample sites are 4 m2 quadrants whose locations were 
measured using a handheld GPS in the field with roughly 3 m accuracy. 
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Figure 15: Three subsample sites (V03, V09, and V61) in the project area. 

 

Land-water analysis 
The percent of each 4 m2 quadrant occupied by land was compared between the predicted land-water 
model generated from UAS imagery (Figure 16) and a similar dataset that is generated by the CRMS 
team and delivered through the CRMS database (Figure 17, CPRA 2012).  The CRMS land-water 
analysis is a pixel-based analysis using aerial photographs with roughly 1 meter ground sample distance.  
The analysis presented here is an object-based image analysis using aerial photography with roughly 
2.5cm ground sample distance.  Results of this comparison are presented in Table 2. 

Given the substantial difference in resolution between the two datasets, and the difficulties in delineating 
the land-water interface when 1 m pixels along the marsh edge are a mix of land and water signatures, the 
estimates of percent land were generally good for two of the three sites.  The unsatisfactory site had a 
small percentage of land estimated by the CRMS model and a large percentage of land estimated by the 
UAS model.  This could be explained by a georeferencing error, by the fact that only 4 pixels in the 
CRMS model constitute the 4 m2 quadrant that was used to query the datasets, or by the difficulties 
mentioned above regarding delineating the land-water boundary. 
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Figure 16: Vegetation model classified from showing the predicted land-water interface and dominant 
vegetation communities. 
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Figure 17: Land-water analysis model classified from 1m resolution aerial photography that is publically 
available through the CRMS program and. 
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Table 2: Results of the land-water classification comparison between the predicted land-water interface 
model and the publically-available CRMS land-water analysis dataset. 

 

CRMS vegetation classification 
Vegetation communities were compared between the predicted vegetation model and the observed CRMS 
data at each of three subsample sites located within the CRMS 0392 boundary (Figure 15).  The predicted 
vegetation model was queried at each location and compared to the percent cover values reported in the 
CRMS dataset.  Results of this comparison are presented in Table 3.  For each sampled location, the 
modeled dominant vegetation matched the observed dominant vegetation on the ground. 

 

Table 3: Results of the vegetation classification comparison between the predicted vegetation model and 
the observed cover values reported in the CRMS dataset. 

 

Plant height 
Plant height was estimated as the difference between the modeled DSM (i.e. the elevation of the tops of 
the plants) and the elevation of the marsh surface.  To estimate the marsh surface, an inverse distance 
weighted method was used to model marsh elevation based on GPS measurements collected when the 
ground control points were surveyed (Figure 18).  Predicted plant height was then calculated as the 
difference between the cell value of the DSM generated from the UAS imagery and the predicted marsh 
elevation raster model (Figure 19).  The model was then queried at the 3 subsample locations where the 
CRMS ground crew surveyed marsh vegetation and measured mean plant height (Figure 15).  Results of 
this comparison are presented in the third and fourth columns of Table 4.   

The CRMS field crews also estimated average marsh elevation based on their GPS surveys.  Their 
estimates are based on multiple points (mean elevation = 0.229 ft above Geoid12A) and are thought to be 
more robust than the single point measurements that this project team collected.  For this reason, a second 
estimate of plant height was calculated as the difference between the cell value of the DSM at each 
sample location and the estimated CRMS-based marsh elevation value for the site.  Results of this 
comparison are presented in the fifth and sixth columns of Table 4.   
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Estimates of plant height were generally good for two of the three sites.  The unsatisfactory site had a 
small percentage of land predicted.  Because the locations of the subsample sites were determined using 
rough GPS estimations (3m), it is highly unlikely that the modeled dataset was queried in the exact 
location as the sites on the ground.  A 3 m distance can easily traverse open water, partial plant cover, and 
complete plant cover in this highly-degraded landscape.  In aggregate, however, the methodology shows 
promise in its ability to estimate plant height at the landscape scale. 

 

 

Figure 18: Predicted marsh elevation surface. 
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Figure 19: Predicted plant height. 

 

 

Table 4: Results of the predicted and measured plant height estimates for three subsample site locations at 
CRMS 0392.  
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VIII. Discussion 
One reason for a lower user’s accuracy, particularly for the water class, is the ability of the researcher to 
observe objects with great detail during the accuracy assessment.  For example, the OBIA rule set 
classified the point shown in Figure 20 as land, but inspection of the hyperspatial imagery shows the grass 
stems and leaves are actually extending over water.  So, this point predicted Grass but the reference class 
was Water at the ground level and was reported as a missed classification.  The scale of this kind of 
analysis and accuracy assessment, however, is novel to hyperspatial datasets and something that will set 
the subdiscipline apart from traditional analysis of 1m aerial photographs.   

 
Figure 20:  An example of a user’s error where the selected point is classified as Grass, but the reference 
class is Water.  The researcher can discern the true reference class only because of the hyperspatial nature 
of the dataset. 
 
Further research is need to refine the algorithms and rule sets for accurate predictions and classifications 
of UAS image datasets.  Additionally, radiometric corrections and standards will need to be set for larger 
regional analyses. The brightness and radiometry of UAS imagery are highly variable because of 
changing sun angles and weather patterns throughout a single flight mission or multiple missions from 
day to day.  This variability in the raw imagery will need to be addressed if standardized approaches at 
larger regional scales are desired. 
 
Another area in need of further research is the estimation of plant biomass and carbon sequestration rates 
based on the UAS imagery and subsequent datasets.  Presumably, if one can correctly classify the 
dominant plant species and plant height of an object, then some standard coefficients could be used to 
calculate the biomass, productivity, and carbon sequestration.  These coefficients would be based on 
experimental and observational datasets, and would be dependent on the local conditions of the site in 
question.  The ability to scale up field-based measurements to regional models, however, remains a 
worthy goal. 
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Lessons Learned 
Operating a UAS in a coastal environment does not come without worry or problems.  Issues to consider 
include proper locations for takeoff and landing, properly estimating flight times that account for high 
wind conditions, and communicating with local land owners regarding privacy and permission concerns.  
Current FAA regulations constrain the UAS to only fly within the line of sight of the pilot in command or 
designated spotter.  If future regulations relax this requirement to allow beyond line of sight operations, 
the ability to work from an upland site and capture imagery over coastal wetland sites will be easier and 
perhaps worthy of long-range, high-endurance UAS investments.   
 
These limitations notwithstanding, there are several benefits to be gained from the use of UAS in coastal 
research.  These operations could save time and money when compared to field surveys of elevation and 
vegetation.  When in the field, there are fewer personnel requirements (1-2 persons minimum).  UAS can 
overcome site accessibility issues such as low water offsetting the need for airboat access.  From a data 
deliverable perspective, UAS can deliver more frequent monitoring events and develop higher resolution 
structural models, surface elevation models, and multispectral orthomosaics of entire project sites.  In the 
case of the CRMS monitoring framework, these datasets can capture previously unknown variability in 
the landscape by generating 1 km2 continuous surface models as opposed to the current dataset of ten 4 
m2 plots per site. 
 
Finally, the ability to generate high resolution maps of the land-water interface, land loss, and habitat 
fragmentation are particularly exciting.  The scale of such assessments could not, at present, be coast-
wide or even regional.  But the potential is there to slowly start increasing the foot print of these kinds of 
analyses, especially as technology advances in both long-distance UAS operations and big data analysis. 
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