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Finkelstein, J. S., & Nardi, M. R. (2016, November 28). Geospatial Compilation and Digital Map of Center-Pivot Irrigated Areas in the Mid-Atlantic Region, United States. Retrieved June 9, 2020, from U.S. Geological Survey: Data Series 932: https://pubs.usgs.gov/ds/0932/report.html



Power lines
..---"""'.‘-r

_— Access lane

Wheel tracks

/ Irrigation arm

Center pivot
tower and
well/pump

Finkelstein, J. S., & Nardi, M. R. (2016, November 28). Geospatial Compilation and Digital Map of Center-Pivot Irrigated Areas in the Mid-Atlantic Region, United States. Retrieved June 9, 2020, from U.S. Geological Survey: Data Series 932: https://pubs.usgs.gov/ds/0932/report.html



AR FEXT N MEET .
o Class Name Walue Color Ciount
Commercial | Industrial
Rasidantizl
Cropland
Farest
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Saraiva, M., Protas, E., Salgado, M., & Souza, C. (2020). Automatic Mapping of Center Pivot Irrigation Systems from Satellite Images Using Deep Learning. Remote Sensing, 12(3), 558. Retrieved November 04, 2020, from https://doi.org/10.3390/rs12030558
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Li, X., & Shao, G. (2014). Object-Based Land-Cover Mapping with High Resolution Aerial Photography at a County Scale in Midwestern USA. Remote Sensing, 6(11), 11372-11390. Retrieved November 04, 2020, from https://doi.org/10.3390/rs61111372
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ELEMENTS OF IMAGE INTERPRETATION

by

Charles E. Olson, Jr.

Supplementary notes prepared for use in
image interpretation training programs

of the University of Michigan School of
Natural Resources, Ann Arbor, Michigan.
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Nine elements of image interpretation are described inm the following para-
graphs. This discussion is not intended to be exhaustive. In fact, a geparate
book eould be writtem about each of the elements mentioned. Appreclation of the
importance of these eslements will grow with experience and practice, This des-
cription serves as an advance look at what is considered in more detail later.

1. Shape. The shape or form of some objects is so descriptive that their
images may be ldentified solely from this criterien. The Pentagon Building near
Washington, D.C. is a classic example.

2. BSize. In many cases length, width, height, area, or volume are essential
to accurate and complete interpretation. The wvolume of wood which ecould bhe cut
from the stand in Figure 1 is dependent upon tree-size, stand density, and size
{or age) of the stand.

3. Tone. Different objects reflect and emit different amounts and wave-

lengths of energy. These differences are recorded as tonal, color, or density

variations in the record. The stand of mixed hardwoods shown in Figure 1 was Process Tree
photographed in late October at the peak of the fall coler change. Specles
differences show clearly in different tones or shades of gray. = = Mice rule set
4. Shadow. Shadows can help or hinder the interpreter, for they reveal - ® Pre-Processing
invisible silhouettes but hide some detail. Shadows in Figure 2 provide infor-

mation on the size and shape of this building which is not apparent from the image 53
of the building alone. These same shadows obscure detail in the lawn and sidewalk
areas in front of the building.

5. Pattern. Pattern, or repetition, is characteriscic of many man-made
objects and of some natural features. The land-use pattern shown in Figure 3
is typical of areas of deep, wind-blown soils. Orchards and strip eropping are u
particularly conspicuous because of patterm. &

6. Texture. The visual impressions of roughness or smoothness created by
some images is often a valuable clue to interpretation. Tree size is often inter-
preted on the basis of apparent texture. Smooth, velvety textures are commonly
assoclated with young saplings, while rougher, cobbled cextures usually indicate
older trees of sawtimber size.

Trimble. (2020). Brainwave. Retrieved from eCognition: Knowledge Base: https://support.ecognition.com/hc/en—us/categories/3600024206?9—Brainwave
Olson, C. E. (1960). Elements of photographic interpretation common to several sensors. Photogrammetric Engineering, 26(4), 651-656. Retrieved December 09, 2020
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Department of Forestry and Resource Management, University of California, Berkeley
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Congalton, R. G. (1991, July). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35-46. Retrieved April 5, 2020, from https://doi.org/10.1016/0034-4257(91)90048-B
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Task Time Date
Define Problem and Propose Project 3 Months | October 2020 - December 2020
Data Acquisition 1 Month December 2020
Feature Extraction Development and Execution |3 Months| December 2020 - March 2021
Accuracy Assessment 1 Month March 2021
Create Final Report 1 Month April 2021
Submit Abstract to Conference 1 Month April 2021
Present at Conference 1 Month May 2021
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