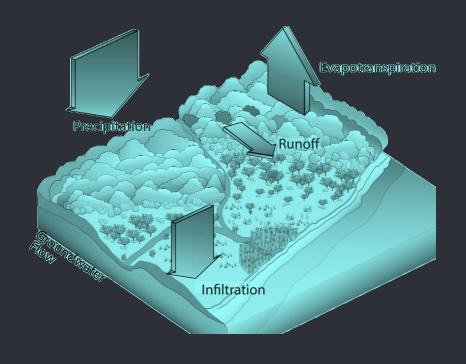
VIRGINIA STORMWATER RUNOFF CALCULATOR

PREPARED BY: JOHN L COLES

ADVISOR: CIBIN RAJ

GOAL

- Develop a web-app which makes it <u>extremely easy</u> for a user to explore current stormwater runoff and pollution generated from an area of interest and to understand how changing landcover affects these values.
 - The geographic extent for the web app will be the Commonwealth of Virginia
 - Extremely easy to use means that user should not require specialized knowledge in Landcover types, soil classifications, or GIS.

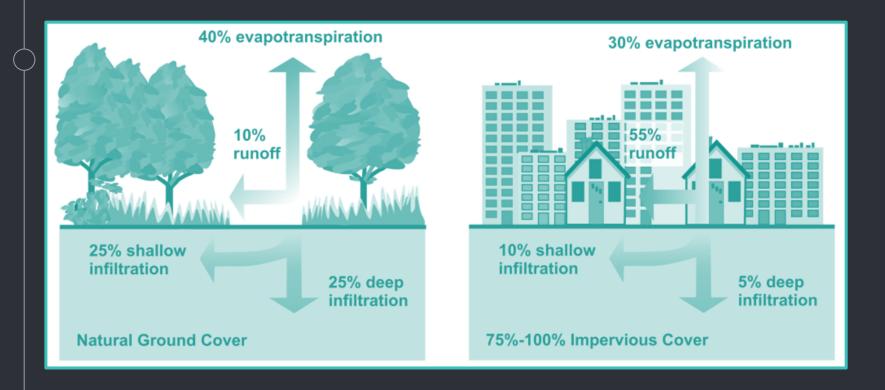

1 BACKGROUND

Why Stormwater Matters

WHEN RAIN FALLS...

When stormwater reaches the ground some of the water:

- o Infiltration
- o Evapotranspiration
- o Runoff



STORMWATER RUNOFF

- AccumulatesPollutants
 - Soil Nutrients
 - Sediment
 - Litter
 - Pet Waste & Raw Sewage
 - Hydrocarbons (oil)
 - Pesticides & Herbicides

URBANIZATION

URBANIZATION IN CHESAPEAKE BAY WATERSHED

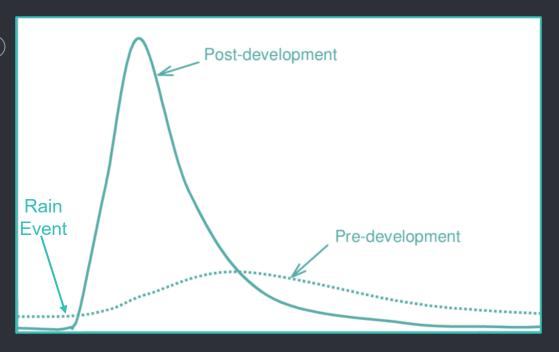
- O Approx. 1 million new people per decade
- o From 8.1 million in 1950 to estimated 19.4 million in 2030.
- o 1990 2000 population increased by 10.3 %, but impervious cover increased by 41%.

STORMWATER RUNOFF VOLUME

- Big Box Hardware
 Store = 352,000
 gallons of runoff
 from 40-acre site.
- Shenandoah
 National Park =
 32,000 gallons
 from 40 acres.

NUTRIENTS

- Nitrogen & Phosphorus
- Over application of fertilizers
- Natural processes
 - Nitrogen Fixation
 - Breakdown of organic matter
- Increased algal blooms
- Decreased dissolved oxygen for other aquatic organisms



SEDIMENT

PRE vs POST DEVELOPMENT

- Flooding
- Stream bank erosion
- Rising water temperatures
- Reduced BaseFlow

2 STORMWATER BMPs

It's not all doom and gloom

STORMWATER BMPs

Practices and structures which capture and treat stormwater runoff, mimicking natural land cover

VIRGINIA RUNOFF REDUCTION METHOD (VRRM)

- Design standards exist for calculating the size of a stormwater management facility – e.g. bio filter:
 - Runoff Volume
 - Required Pollutant Removal
- In Virginia, the VRRM defines these calculations.

3 EXISTING SYSTEMS

Evaluating what already exists

EXISTING CALCULATORS

VRRM Spreadsheet

Pros:

- Calculates subwatersheds
- Calculations in form for submission to VA-DEQ

Cons:

- Complicated and Intimidating to use.
- User must supply their own land cover and soil data.
- Supporting
 Documentation is highly technical.

EPA National Stormwater Calculator

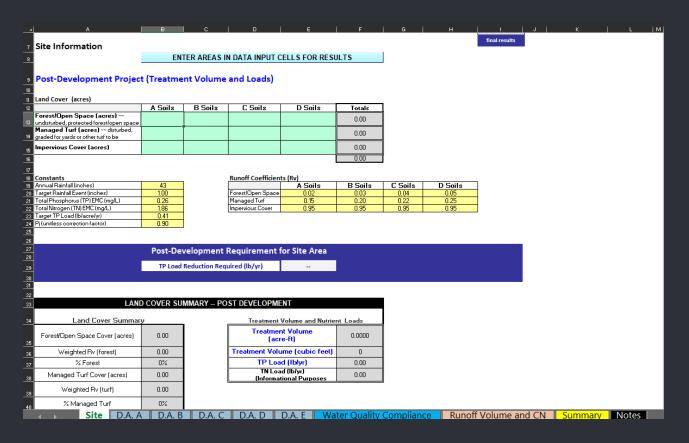
Pros:

- Automatically integrates landcover and soil data.
- User Friendly
- Includes existing BMPs in calculations

Cons:

- Calculates area of interest using circular buffer area
- No opportunity to explore how changes in land cover affect runoff volumes.

L-THIA – Perdue University


Pros:

- Calculates Quickly
- Offers users the opportunity to explore how changes in land use affect runoff volume

Cons:

- User must supply their own soil data
- Land cover is qualitative rather than quantitative

VRRM SPREADSHEET

EXISTING CALCULATORS

VRRM Spreadsheet

Pros:

- Calculates subwatersheds
- Calculations in form for submission to VA-DEQ

Cons:

- Complicated and Intimidating to use.
- User must supply their own land cover and soil data.
- Supporting
 Documentation is highly technical.

EPA National Stormwater Calculator

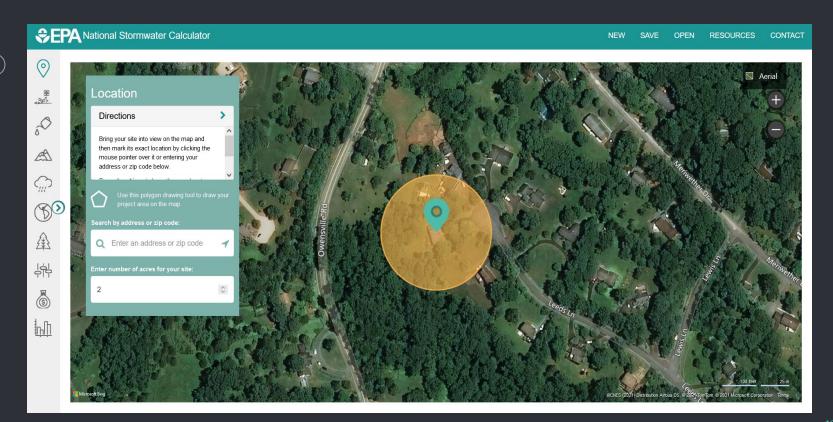
Pros:

- Automatically integrates landcover and soil data.
- User Friendly
- Includes existing BMPs in calculations

Cons:

- Calculates area of interest using a default circular buffer area.
- No opportunity to explore how changes in land cover affect runoff volumes.

L-THIA – Perdue University


Pros:

- Calculates Quickly
- Offers users the opportunity to explore how changes in land use affect runoff volume

Cons:

- User must supply their own soil data
- Land cover is qualitative rather than quantitative

US EPA NATIONAL STORMWATER CALCULATOR

EXISTING CALCULATORS

VRRM Spreadsheet Pros:

- Calculates subwatersheds
- Calculations in form for submission to VA-DEQ

Cons:

- Complicated and Intimidating to use.
- User must supply their own land cover and soil data.
- Supporting
 Documentation is highly technical.

EPA National Stormwater Calculator

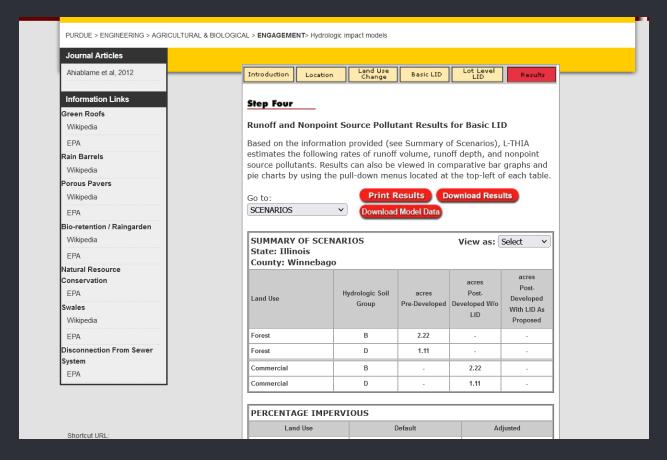
Pros:

- Automatically integrates landcover and soil data.
- User Friendly
- Includes existing BMPs in calculations

Cons:

- Calculates area of interest using circular buffer area
- No opportunity to explore how changes in land cover affect runoff volumes.

L-THIA – Purdue University


Pros:

- Calculates Quickly
- Offers users the opportunity to explore how changes in land use affect runoff volume

Cons:

- User must supply their own soil data (provided for great lakes region)
- Land cover is qualitative rather than quantitative
- Complex to use

L-THIA PERDUE UNIVERSITY

PROPOSED SYSTEM

- Intuitive to Use
- Requires no specia lized skill in
 - Soil Science
 - GIS
- Only user input is AOI
- Remove barrier to entry for data and information about stormwater runoff calculations.

The design will

"assume the
burden of
complexity"
so the user
doesn't have to.

Jackson Noel – Appcues Blog

4

METHODS

Design Considerations

OVERVIEW

Development

- Built using basic web scripting languages of HTML, CSS, & Java Script
- Maps will be constructed using ArcGIS API for Java Script
- Based on calculations specified in VRRM

Design

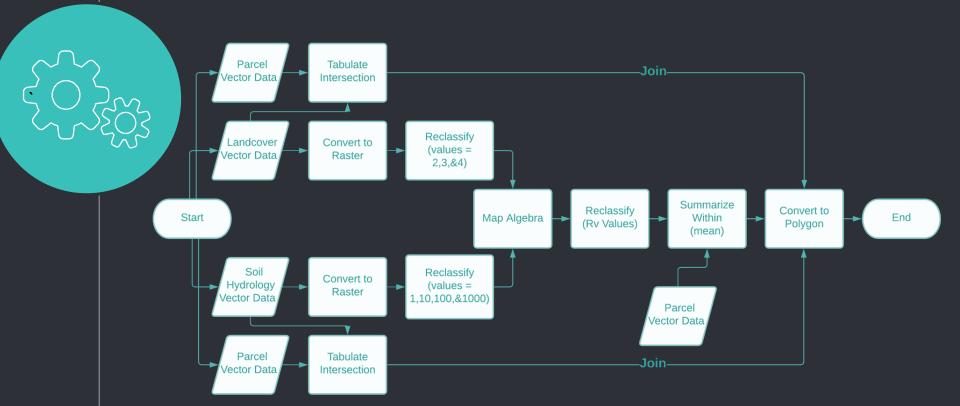
- Broken into bite-sized' actions to prevent users from becoming overwhelmed
- Only one user action per page
- Significant consideration to user experience.

Data Sources

Soil Hydrology

- USDA NRCSWeb Soil Survey– SSURGO
- Vector Data
- Nation Wide

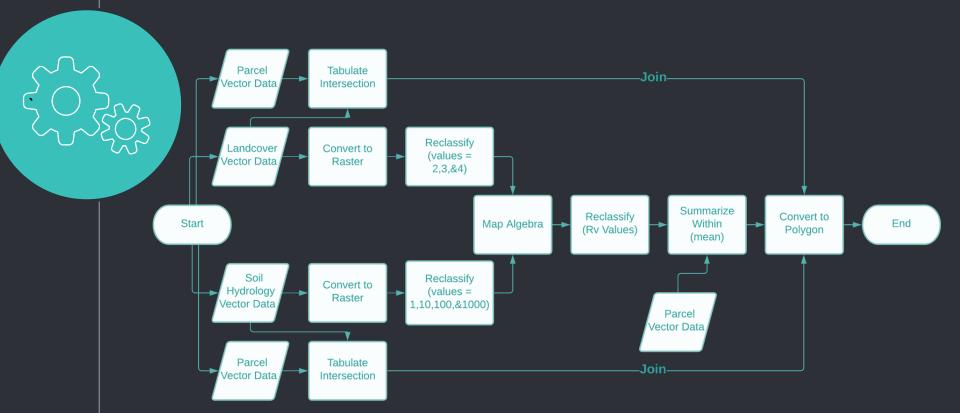
Land Cover


- VGIN
- Vector Data
- Statewide

Parcels

- VGIN
- Vector Data
- Statewide

GEOPROCESSING


GEOPROCESSING RECLASSIFY

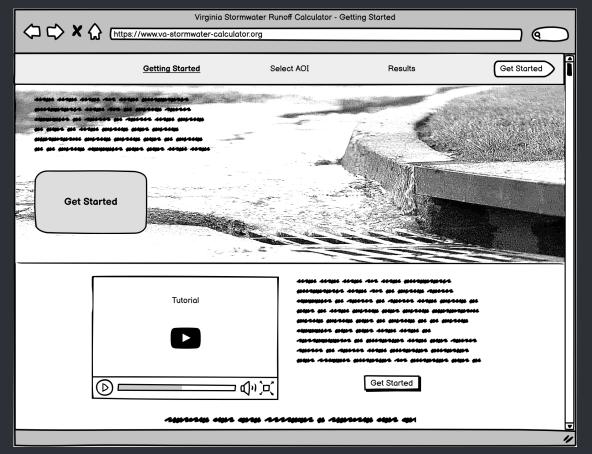
		Α	В	С	D		
	Multiplier	1	10	100	1000		
Forest/Open	2	2	20	200	2000		
Managed Turf	3	3	30	300	3000		
Impervious	4	4	40	400	4000		
	= Reclass Value						
	= Map Algebra Value						

Reclass to \downarrow

R _v	Α	В	С	D
Forest/Open	0.02	0.03	0.04	0.05
Managed Turf	0.15	0.20	0.22	0.25
Impervious	0.95	0.95	0.95	0.95

GEOPROCESSING

GEOPROCESSING PILOT STUDY

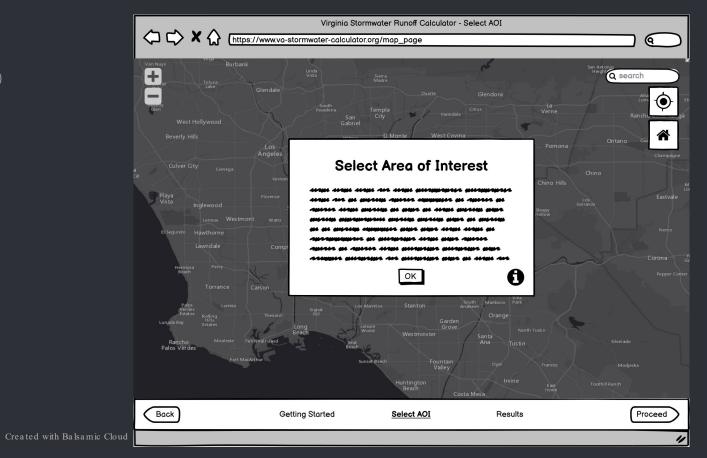


LANDING PAGE

- First page of application.
- Everything points towards"GET STARTED"
- Distraction Free
 - No external links
- Briefexplanation of how application is useful
- Simple tutorial.

Get Started

LANDING PAGE WIREFRAME



MAP PAGE

- On the map page the user will select their Area-of-Interest (AOI)
- Uses ArcGIS API for Java Script.
- MapView's HitTest property to select parcel.
- SessionStorage is used to temporarily save attributes to browser to pass to results page.

MAP PAGE WIREFRAME

RESULTS PAGE

Column One Results

- Displays the Stormwater Runoff Values for the user's AOI
- Passed from map page via Session Storage
- In format matching VRRM Spreadsheet

Column Two Redevelopment

 Allows user to enter alternate values for landcover to explore how changing land cover affects storm water.

Column Three Suggested BMP's

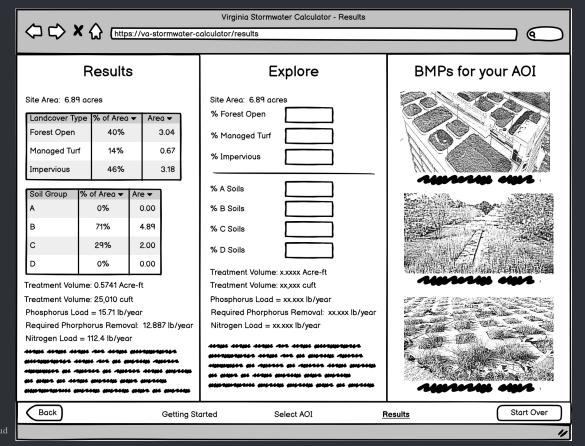
- Based on AOI properties, recommends
- Based on AOI size and land cover
- Includes links to get more information.

RESULTS PAGE CALCULATIONS

- Results populated from feature class attributes
- If user chooses to 'explore' how changes to land use affect runoff, values will be calculated using Java Script

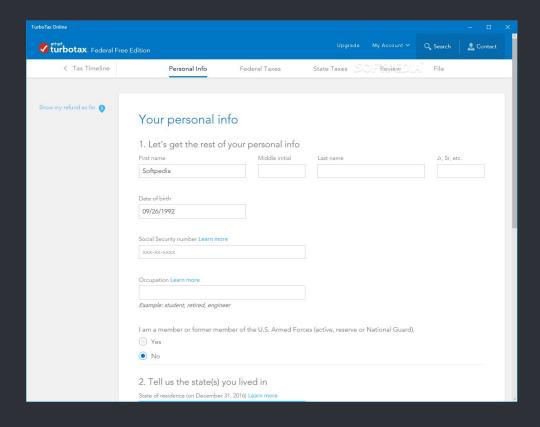
- Calculate Values include:
 - Weighted RunoffCoefficient
 - Runoff Volume
 - Phosphorus Load
 - Required Phosphorus Removal
 - Nitrogen Load
- Calculations are defined in VRRM Handbook & narrative proposal.

RESULTS PAGE: BMP RECOMMENDATION MATRIX EXAMPLES


Constructed Wetland: Site is greater than 300 acres AND Forest/Open is less than 100%

Wet Swale: Site is greater than 9 acres AND impervious cover is less than 50%

Porous Pavement: Impervious cover is greater than 0%

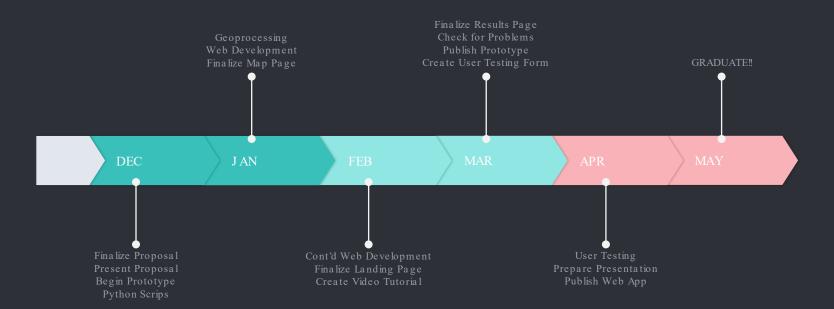

Conservation of Natural Areas: Recommended under all conditions

RESULTS PAGE WIREFRAME

USER EXPERIENCE

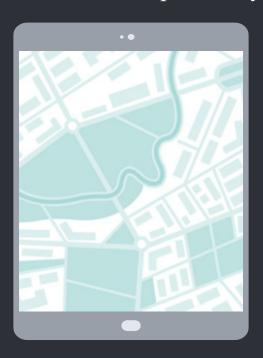
- Turbo Tax
- Workflow broken into "bite-sized" pieces.
- Uncluttered
- Calming Colors
- Status indicator
- What's Ahead
- Help & Tool Tips
- Consistent Theme across Application

USER TESTING

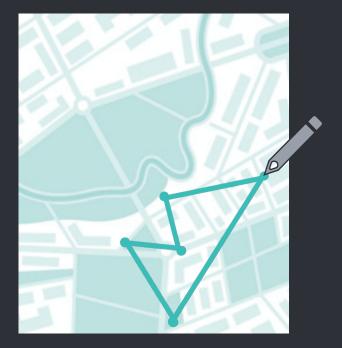

Upon completion of a functional prototype:

- Potential Users will be asked to 'test-drive' the system.
- Classmates, co-workers, industry professionals, friends, family.
- Given a task, then asked questions about experience
- Use free questionnaire gather feed back
- Iterative test, adjust process

Evaluation Questions


- User Information
 - Profession
 - Technology Proficiency
- Technical Issues
 - Device & Web Browser
 - Dead Links
 - Long Load Times
- Usability
 - Trouble using app
 - Buttons not where expected
 - Navigation issues
 - Tutorials/Tooltips not helpful

Timeline



FUTURE WORK

Mobile Compatibility

• Select AOI by Polygon

CONCLUSION

This proposal:

- Includes design instructions, processes, and considerations for building out the "Virginia Stormwater Runoff Calculator"
- O Defines a system which is intuitive and easy to use.
- Includes steps for obtaining user feedback for continual improvement.
- Assumes the 'burden of complexity' in making stormwater runoff calculations accessible to the lay user.

For full details please see the narrative proposal.

Thanks!

ANY QUESTIONS?

You can find me, John Coles at jlc696@psu.edu