
Implementing a Natural Language Processing
Framework to Perform Spatial Searches of

OpenStreetMap Features in ArcGIS

April 24, 2013

Gary R. Huffman
grh145@psu.edu

MGIS Capstone Project
The Pennsylvania State University

Faculty Advisors:
Dr. Alex Klippel

Dr. Jan Wallgrün

mailto:grh145@psu.edu
mailto:grh145@psu.edu

I. Abstract

This paper describes the development of a framework for an ArcGIS Desktop
application that uses natural language processing tools and full-text indexing
libraries to search for basic topological relationships within OpenStreetMap data.
Tools such as named entity recognizers and part-of-speech taggers can be run
directly within the GIS application enabling natural language search functions
typically available only through web-based mapping applications like Bing and
Google. Many of these web-based mapping tools do not identify topological
relationships described by spatial prepositions such as in and on, but typically return
results based upon bounding boxes or an address geo-coding attribute such as
place name. Challenges and complexities attributed to natural language processing
make this a difficult task, as certain spatial relationships defined by prepositions can
be vague and ambiguous. While humans can understand the grammar and syntax
in language, computers have difficulty manipulating the concepts and implied
meanings within in a spatial search. This proof-of-concept ArcGIS application
processes basic natural language searches and generates spatial queries that can
identify the intended spatial prepositions such as contains and intersects. This
provides a more natural search interface for the GIS user while also expanding the
role of OpenStreetMap within ArcGIS beyond that of a base map option.

Implementing a Natural Language Processing Framework to Query OpenStreetMap Features in ArcGIS

2

II. Problem Description

Information retrieval within the context of a Geographic Information System (GIS)
typically requires the use of Structured Query Language (SQL) and a basic
understanding about the data structure. While well suited for standard GIS use, the
limitation of SQL and the nature by which users interact with GIS precludes
a d v a n c e d s e a r c h e s m u c h b e y o n d s i m p l e t e r m m a t c h i n g a s i n
[Points_of_Interest_Name]= “Starbucks” or [Feature_Type] = ‘Café’. A slightly more
a d v a n c e d v e r s i o n m i g h t a l l o w f o r t h e u s e o f w i l d c a r d s a s i n
[Points_of_Interest_Name] like ‘*Starbucks*’. Spatial queries frequently require the
use of units of measure when searching for features having a certain area or length
or multiple features within a certain distance of one another. Furthermore, the type
of spatial relationship must be explicitly identified. Topological relationships - namely
those that do not rely upon numeric distances - are more complex and involve the
use of advanced geoprocessing tools and SQL statements. Most users, especially
those who are accustomed to interacting with on-line search engines like Bing and
Google are comfortable searching with natural language. For example, (1)
“Starbucks in Vienna, VA” and (2) “Parks near Vienna” are ill suited for a typical GIS
SQL query especially if the user is oblivious to the way in which the data are stored.
However, these are very common methods to search the Internet and a more natural
way for a user to interact with a GIS.

Far less obvious are the complexities surrounding the use of spatial prepositions in
the two examples. Hall (2008) describes the “vagueness of spatial relations” and
attempts to quantify these in terms of spatial prepositions. The spatial operations
implied by ‘near’ and ‘in’ are ambiguous. The preposition term ‘in’ from example (1)
suggests the topological relationship “containment” as in “Starbucks represented as
one or more point objects that fall within the spatial boundary defined by the
polygonal area of Vienna, VA.” Of course, the notion of containment for Starbucks
within Vienna, VA becomes very difficult to conceptualize if a point feature derived
from a gazetteer represents Vienna, VA.

The term ‘near’ is equally ambiguous in example (2) given above. Without a notion
of a distance, reference, or scale, the term ‘near’ can define anything from 1 mile to
50 miles, in all directions or a specific direction. In the linguistic sense of spatial
prepositions, Coventry and Garrod (2004) describe ‘near’ as a projective term (along
with ‘far’) that “…give information about the distance between objects.” Further
complicating the use of projective prepositions is the fact that they can fall into
different categories of reference: intrinsic (object-centric); relative (viewer-centric);
and absolute (environment-centric) (ibid). In example (2), the type of spatial
relationship suggested by ‘near’ is unclear and could imply parks: 1) completely
within the geographic boundary of Vienna; 2) within the geographic boundary yet
some portion of the park intersects the boundary; or 3) external to the geographic
boundary of Vienna but within a certain distance.

Implementing a Natural Language Processing Framework to Query OpenStreetMap Features in ArcGIS

3

Natural Language Processing (NLP) is a computer science discipline that addresses
the understanding of concepts and intended meanings in human language. While
humans are fairly adept at understanding the linguistic and grammatical syntax as
well as the implied spatial relationships in the previous examples, computers have
great difficulty processing natural language queries. NLP tools and software
application programming interfaces (APIs) have evolved to enable computers to
extract named entities from text (e.g., recognize Starbucks as an organization),
translate information between languages and, as described by Kordjamshidi, Hois,
van Otterlo and Moens (2011), begin to interpret spatial natural language. Examples
of these systems and APIs include the Natural Language Toolkit (NLTK, 2013),
Stanford University’s coreNLP (Stanford, 2013) and the University of Sheffield’s
General Architecture for Text Engineering (GATE, 2013).

Unfortunately, these tools have not yet made their way into the ArcGIS desktop suite
of applications. Presently a user must conduct searches through a controlled
interface that constructs a SQL statement or by using a text search capability that
allows for a more generic term search (obfuscating some of the complexity that
exists when using SQL). Furthermore, ArcGIS does not support using natural
language as a search mechanism to identify topological relationships. These must
be implemented using yet another specialized selection tool that constructs spatial
queries based upon specific choices regarding the desired spatial relationships.

OpenStreetMap (OSM) is the Wikipedia of spatial information and is composed
primarily of user contributions and some donated data that provides near-worldwide
coverage of GIS data. Individuals can create and update the OSM database
through the use of a GPS receiver or through heads-up digitizing with one of the
popular OSM client applications. This makes OSM unique in that it contains
features that do not exist in any other GIS data set. Even better, the entire
database, comprised of 21 gigabytes of compressed XML data, is free for anyone to
use under the Open Database License (ODbL) share-alike license (OpenStreetMap,
2013)

This is likely the reason the number of commercial applications utilizing OSM has
grown. In early 2012, the social networking company FourSquare migrated from the
Google Maps base map interface to the OSM base map due to increased costs and
licensing issues (FourSquare Blog, 2012). More recently, and perhaps more
significantly, Apple adopted portions of OSM to support a new release of its iPhoto
application used to geotag digital pictures (Bennett, 2012). OSM is also available as
a base map option within ArcGIS Desktop. In this form, OSM tiles are included as a
read-only base map layer upon which other geographic features can be displayed.

While OSM is not the only base map option available within ArcGIS, in many
instances it contains the highest level of detail of all the vector-based base maps as
demonstrated by the figures below. One figure depicts the Bing base map covering
a portion of the Penn State Campus in State College, PA while the other uses the

Implementing a Natural Language Processing Framework to Query OpenStreetMap Features in ArcGIS

4

OSM base map. Finally, a portion of extracted building features from the OSM
database is layered upon the Bing base map.

Figure 1 - ArcGIS Map over the Penn State Campus using the Bing base map
© Microsoft Corp. and its data suppliers

Figure 2 - ArcGIS Map over the Penn State Campus using the OSM base map
© OpenStreetMap contributors (CC-BY-SA)

Implementing a Natural Language Processing Framework to Query OpenStreetMap Features in ArcGIS

5

Figure 3 - ArcGIS Map over the Penn State Campus using the Bing base map layered with extracted
OSM Features

 Data © OpenStreetMap contributors (CC-BY-SA); base map © Microsoft Corp. and its data suppliers

Figure 3 illustrates the detail contained within the OSM database and base map
relative to the other base map options within ArcGIS. Users hoping to locate a
campus building using the Bing base map will not have the level of detail provided
by OSM. However, the OSM database is not exposed to the “out of the box” search
tools provided by ArcGIS desktop. In order to search OSM data, the user must first
extract the features into a GIS database or shapefile.

Given the lack of robust search tools that support natural language queries within
ArcGIS, users are required to develop complicated SQL statements to perform basic
feature selections. Furthermore, the complexity coupled with the number of steps
required to perform a spatial query in ArcGIS using out-of-the-box tools make it too
difficult for a casual user. Features must first be selected from a source and target
layer before the ‘Select by location’ tool can be used. This makes it impractical for
identifying basic topological relationships between features.

III. Developed Solution

To address these problems, I have integrated natural language processing
functionality into ArcGIS as a Microsoft .Net application. A user can execute a
natural language query using the NLP application to search a GIS database
constructed from OSM data. The application identifies parts of speech (POS)
including nouns, noun phrases and prepositions within a search query string.
Named entities such as locations and organizations are also identified. The

Implementing a Natural Language Processing Framework to Query OpenStreetMap Features in ArcGIS

6

prototype supports both attribute and spatial searches based upon the query string
and the information extracted from the text. In the case of a spatial search, the
prototype limits the the initial number of allowable prepositions to those Garrod and
Coventry (2004) describe as “simple” topological terms: IN and ON (the third
preposition ‘UNDER’ is applicable in 3D scenarios and, therefore, will not be
considered). Figure 4 describes a preposition taxonomy as presented by Garrod
and Coventry.

 Figure 4 - Preposition Taxonomy as Defined in Garrod and Coventry (2004)

All other cases will be considered as attribute searches (those that do not contain
one of the previously mentioned prepositions). The initial capabilities of the
prototype are modest due to the complexities involved with the linguistic variations
possible from prepositions and other parts of speech. In addition, I have limited the
spatial relations to those involving only features in a point/polygon configuration.

My efforts follow the work done for the GeoCAM project (Jaiswal et al, 2011) and
SensePlace2 project (MacEachren et al, 2011) that incorporate NLP tools to extract
entities from unstructured text. This solution used similar well-established NLP
information extraction methods but focused more on the ability to derive topological
relationships from search queries.

Users input a query string and the NLP application returns a list of features that
match the search parameters. The user can select an individual feature and
visualize the selection in the context of OpenStreetMap data in ArcGIS. When the
user inputs a query that tries to identify a topological relationship between two
groups of features, the NLP application performs an ArcGIS spatial selection using
the feature geometries and the spatial relationship that is derived from the spatial
preposition located in the search string.

My prototype system consists of two main components: the OSM Database Import
Tool and the Query Processing Pipeline.

Prepositions

Grammatical uses Local uses

Temporal Uses Spatial Uses

Directional Locative/Relational

Projective/Dimensional Topological

“Simple” Topological Terms Proximity Terms

Implementing a Natural Language Processing Framework to Query OpenStreetMap Features in ArcGIS

7

A. OSM Database Import Tool

This module functions as a stand-alone tool that imports an OpenStreetMap
XML file and creates an ArcGIS feature class for points, lines and polygons
respectively. These feature classes represent spatial data as defined in OSM by
nodes, ways (lines and polygons) and relations (lines and polygons) and are
created in an ArcGIS file geodatabase. The Database Import tool also populates
a Lucene index that includes the ObjectID for each feature written to the
geodatabase. This allows feature selection using Lucene without the need to
directly query the geodatabase.

MongoDB is used as a staging database while reading the OSM XML file
(MongoDB, 2013). This is primarily due to the memory requirements necessary
to read and process a single OSM file as they can easily exceed 1 GB in size.
MongoDB is a popular NoSQL document database that is ideally suited to
manage OSM features due to its flexible data model. Where a RDBMS requires
a predefined schema at the table level, MongoDB allows a document - the
conceptual equivalent to a table row - to have a schema independent of any
other document in a collection (the conceptual equivalent of a database table).

A MongoDB database is created for the imported OSM file and separate
collections created for nodes, ways and relations. The nodes collection contains
a document for each node read from the OSM file including geometry definitions
for every vertex used to create feature geometry in the geodatabase. The way
collection contains both line and polygon features and a type value is determined
based upon the vertices that make up the geometry. The relation collection is
similar in that it contains both line and polygon features; however, relations are
defined by existing lines and polygon features as opposed to being defined by a
set of vertices. Figure 5 depicts the flow of data into the MongoDB collections for
nodes, ways and relations.

MongoDB

Relation
Collection

 <node id=‘1167265750’
 timestamp=‘2012-03-09T13:30:02Z’
 uid=‘621860’
 <tag k=‘amenity’ v=‘fast_food’ />
 <tag k=‘cuisine’ v=‘burger’ />
 <tag k=‘name’ v=‘McDonald's’ /
>
</node>

Way
Collection

Node
Collection

Figure 5 - OSM XML File Imported into MongoDB Collections

Implementing a Natural Language Processing Framework to Query OpenStreetMap Features in ArcGIS

8

Nodes that are represented as features within the Point feature class are
distinguished from nodes that are functionally part of other features if they have
at least one tag definition that does not specify the user id or creation date of the
record. This ensures that the point feature class consists of geometries that are
stand-alone features (e.g., the way that represents a Starbucks café) as opposed
to a way used as a vertex that only serves to define another feature (e.g., a
polygon representing a building).

The geodatabase schema has a simplified structure due to the enormous
flexibility OSM affords users when creating feature attribution to any given
geometry. For example, a way feature can have multiple name values – each in
a different language – as well as other tag values such as “place,” “is_in,”
“tourism” and “amenity.” Instead of creating separate fields to accommodate the
diverse set of tags, each unique tag is concatenated into a delimited field named
‘generic.” In instances where the software can identify the “name” tag for a given
geometry, the name field will be populated. However, the “generic” field contains
all feature tags imported into the geodatabase. The format for the key/value pair
will be colon separated as in “key:value” and each pair will be further delimited
within the generic field using the pipe ‘|’ character.

During the process by which the OSM data is being loaded into the geodatabase,
the OSM Database Import Tool indexes the POINT, LINE and POLYGON
features using the Lucene search libraries. Lucene allows for full text indexing of
the database tables and enables the searchable index to be utilized outside the
geodatabase. The NLP Search application searches the Lucene index for
features that match the query terms. Figure 6 depicts the process of loading the
geodatabase and populating the Lucene index.

Implementing a Natural Language Processing Framework to Query OpenStreetMap Features in ArcGIS

9

GeoDB

Lucene
Index

MongoDB

Field Name Data Type

OBJECTID Object ID

Shape Geometry

OSMNODEID Long Integer

MongoID String

Name String

Type String

Generic String

Figure 6 - Loading and Indexing the Geodatabase with Lucene

Lucene .Net is a set of libraries that support full-text indexing and search
functionality to support a variety of information retrieval tasks (Apache, 2013). It
does this by exposing a number of different algorithms that allow a .Net
developer to tokenize and index textual information for advanced search
capabilities. The index created by Lucene is often referred to as an inverted
index and is depicted in Figure 7.

ID ... Generic

1 name=Starbucks | amenity=cafe

2 name=Dunkin Donuts amenity=cafe

3 tourism=hotel | name=Homestead

4 amenity=fast_food | name=Dominos

Token Documents

name=Starbucks 1

amenity=cafe 1,2

tourism=hotel 3

name=Dunkin Donuts 2

Geodatabase Table Inverted Index

Index with Lucene

Figure 7 - Example of Lucene Inverted Index For the Generic Field

Lucene creates its index by processing a string of text and applying a
tokenization scheme through which individual tokens (typically individual words
that appear in the source text) are identified and written to a table along with an
identifier that denotes the document containing the token. When a feature is

Implementing a Natural Language Processing Framework to Query OpenStreetMap Features in ArcGIS

10

created within the geodatabase, the text of each field from the feature class
attribute table - excluding the binary feature geometry - is processed and written
to the Lucene index. For simplicity and portability, the Lucene index is stored in
the same folder as the ESRI geodatabase; however, the Lucene index can be
stored and accessed separately from the geodatabase. This was an important
design consideration as the Lucene index will return individual feature ObjectIDs
from a search request without ever touching the geodatabase tables.

The OSM Database Import tool is launched using a button located on the main
toolbar of ArcGIS. A dialog window displays options for the user to select and
load an OSM file.

Figure 8 - OSM Database Import Tool with a file selected for processing

After clicking on the ‘Load Data’ button, the application extracts the contents from
the OSM XML file and populates the MongoDB database. Once this process is
complete, the dialog window displays record counts for each of the data types
that have been extracted: Nodes, Lines, Polygons and Relations. Check boxes
allow the user to determine which OpenStreetMap features should be loaded into
the geodatabase.

Implementing a Natural Language Processing Framework to Query OpenStreetMap Features in ArcGIS

11

Figure 9 - OSM Database Import Tool with a file selected for processing

Once the appropriate input feature types have been selected, the user clicks the
‘Go!’ button to begin populating the geodatabase and creating the Lucene index.
These steps happen simultaneously and can sometimes take upwards of 15
minutes depending on the amount of data being processed. After the import
process is complete, the feature classes are loaded into the ArcGIS table of
contents and the map area is refreshed to display the features.

Implementing a Natural Language Processing Framework to Query OpenStreetMap Features in ArcGIS

12

Figure 10 - OpenStreetMap Data Rendered as Geodatabase Features in ArcGIS

B. NLP Search Application

This software functions as a standalone ArcGIS application with the primary
purpose of selecting and visually identifying features that have been returned
from a user query expressed in natural language. It searches the Lucene index
created by the OSM Database Import Tool for any feature classes loaded in the
ArcGIS map view. Features that participate in either an attribute or spatial query
are identified by ObjectID using the Lucene index. The spatial query seeks to
identify topological relationships supported by the two spatial prepositions ‘IN’
and ‘ON’ for point/polygon whereas an attribute query tries to identify matching
terms in the feature attribute table. The ObjectIDs are used to select records in
the feature class attribute table in order to show a visual selection within the map
view in ArcGIS.

The application processes each query through a system workflow pipeline,
referred to as the ‘Query Processing Pipeline,’ that applies various NLP tools and
queries in order to display results within the map display. Figure 11 describes the
different components that make up the Query Processing Pipeline.

Implementing a Natural Language Processing Framework to Query OpenStreetMap Features in ArcGIS

13

Tokenize
Search
String

POS
Tag

NER
Tag

Normalize
Entities

Construct
Queries

Identify
Features

Intersect
Selections

Figure 11 - NLP Search Application Query Processing Pipeline

Query Processing Pipeline

The ‘Query Processing Pipeline’ is a process workflow that performs NLP
analysis and search functions on the string of text entered by the user. When the
NLP Search Application is initiated, a .Net class is instantiated to store and
manage the output from each step in the workflow. The ‘phraseObject’ class
stores the source query, the parts of speech as identified for each word in the
query, a spatial preposition and its location in the query string, the source and
target phrase clauses, entities that exist in the source and target clause
respectively and the fields to be searched. Each step processes the
phraseObject and works on the output from previous steps as required.

1) Tokenize Search String

This module strips punctuation from the search string and identifies individual
words from a series of characters. A specialized function is used to identify
and remove punctuation likely to occur in the search string. Specifically, this
removes any commas, periods and question marks. Words are identified and
stored in a string array calculated by the C# string split() function that uses
the space character as a separator. This enables better processing of
individual words and allows the system to assign part of speech and entity
tags to each word.

2) POS Tag

The POS Tag module has two primary functions: identify the part of speech
for each word in the search string; and, determine if the search string contains
any prepositions. The assignment of POS values to each term is performed
using the Stanford University Part of Speech tagger software (Toutanova et
al, 2003). This software is written in Java and implements a log-linear part of
speech tagger (Ibid).

When the application is first instantiated, it loads a trained model for the POS
tagger. This model ultimately enables the tagger to statistically predict the
part-of-speech for each word. For the prototype, I use a model trained on
annotated Wall Street Journal articles. However, it should be noted that any
of the provided models can be used. Ultimately, I selected a generic model
that performed well in preliminary tests using a sample of test queries.

Implementing a Natural Language Processing Framework to Query OpenStreetMap Features in ArcGIS

14

In order to make POS tagger software function within a .Net application, I
incorporated the IKVM software libraries (IKVM, 2013). This allows a Java
JAR file to be wrapped within a .Net dynamic linked library (dll) such that calls
can be made directly to the JAR file using C# syntax.

The POS tagger identifies any nouns, verbs, adjectives, adverbs, pronouns,
prepositions and other parts of speech given an input string of text. Each
word is annotated using the Penn Treebank tag set (Marcus, Santorini, and
Marcinkiewicz, 1993).

If a preposition is located within the search string, it is stored in the
phraseObject class and an index that describes its location within the string
array is saved. The presence of a preposition also determines whether the
query should be considered an attribute or spatial query.

In the case of a spatial query, the search string is further segmented into
source and target phrases using the previously identified preposition as a
separator in the C# string split() function.

For example, the search string “Find the Starbucks in Los Angeles” would be
segmented into the following two phrases:

Source: Find the Starbucks; and
Target: Los Angeles

In the case of an attribute query, the search string becomes the source
phrase while the target phrase is left undefined.

3) NER Tag

The NER Tag module identifies any location and organization entities that
exist within the search string. This is done using the Stanford University
Named Entity Recognizer software (Finkel et al, 2005). This software is
written in Java and implements a conditional random field classifier (Ibid).

When the application is first instantiated, it loads a trained model for the NER
tagger. This model ultimately enables the tagger to statistically predict the
type of entity for each word. For the prototype, I use a model trained on
annotated US and UK news articles. However, it should be noted that any of
the provided models can be used although some of these models identify
entity types that are not applicable to this prototype (e.g., monetary amounts
and time). Ultimately, I selected a generic model that could identify locations,
persons and organizations.

Implementing a Natural Language Processing Framework to Query OpenStreetMap Features in ArcGIS

15

In order to make NER Tag software function within a .Net application, I
incorporated the IKVM software module in the same manner as was done for
the POS Tag software.

Once the source and target phrases have been identified, the NER Tag
module determines whether any entities exist. Entities are tagged as either a
PERSON, LOCATION or ORGANIZATION. However, the prototype ignores
any words that may be tagged as a PERSON. Note this may inadvertently
occur for businesses that are based upon a person’s name (e.g., “Arthur
Treacher”). Each phrase and any entity it may contain is managed within the
‘phraseObject’ class.

For example, the search string “Find the Starbucks in Vienna” would yield the
following tagged sequence:

! Find/O the/O Starbucks/Organization in Vienna/Location

4) Normalize Entities

Once the two Stanford NLP tools have been used to analyze the search
string, some normalization is required to clean up any entities. Furthermore,
there may be some instances where the NER Tag does not locate any
organizations or locations in either the source or target phrase.

The most important part of normalizing entities is identifying a suitable entity
value in the event the NER Tagger cannot determine an organization or
location. This is done by analyzing the part-of-speech values for each word in
the query string. The assumption is made that nouns are likely to be an entity
in the search string. Therefore, the appropriate source and/or target phrase is
analyzed and any noun identified is designated as the entity.

Additional steps are taken to refine the entity value when the entity type is
assigned based upon the word’s part of speech. In this instance, a special
phrase dictionary is used to determine the best way of identifying features in
the OpenStreetMap database. OSM has enabled a search tool called
Nominatim (OpenStreetMap Wiki, 2012) that utilizes a list of user contributed
Special Phrases that map terms into the OSM schema for key/value attribute
pairs. For example, OSM represents airport by the key/value pair
‘amenity=airport.’ Because plural cases are not managed separately within
OSM, a separate Special Phrases entry exists for airports that maps to the
key/value pair ‘amenity=airport.’ Furthermore, certain key words may
participate in multiple key/value pairs. This is true for the term ‘Bar.’ It can be
identified by using either “amenity:bar” or “amenity:pub.” Any entity that is
defined based upon its part of speech will be filtered against a MongoDB
collection of the Nominatim special phrases. In cases where a term is located
within Nominatim, the OSM key/value term will be used as the entity value

Implementing a Natural Language Processing Framework to Query OpenStreetMap Features in ArcGIS

16

(e.g., an entity term of ‘airports’ will be replaced by the Nominatim term
‘amenity=airport).

There are certain instances in which a location name is comprised of more
than 1 word as in Los Angeles. The NER Tagger software does not combine
terms and simply tags each term as a location value. This requires further
analysis of the string in order to combine the location terms into a single entity
value that represents a location. This is done by searching for consecutive
words that have the same NER tag value.

For example, the NER Tag module would process the following query string
“Where are the Starbucks in Los Angels” as:

Where/O are/O the/O Starbucks/Organization in/O Los/Location Angeles/
Location

However, this module correctly merges the two terms together when defining
the location entity as in “Los Angeles.”

Any locations that contain a state name or abbreviation are modified to
remove the state reference. This modification is made due to the lack of a
state value in the OSM database for a populated place polygon (e.g., the
polygon representing Vienna, Virginia does not include a tag value that
includes the state name of Virginia).

5) Construct Queries

Queries are constructed based upon the source and target phrases and the
types of entities identified. In instances where the NER Tag software
determines the entity, the likelihood is great that the organization or location
are described using the name tag value in the OSM database schema. If the
entity is determined using the POS Tag software, the likelihood is great that
the entity is a more generic noun or an organization/location that went
unrecognized. In the case where the entity is a qualified organization/
location, the ‘name’ field will be searched. In the case where a noun identified
by the POS Tag module is used as the entity, the ‘generic’ field will be
searched. The ‘phraseObject’ is updated with the appropriate search field
information for both the source and target phrases.

6) Identify Features

This module is responsible for identifying features from the geodatabase that
will participate in a spatial query. The determination is based upon a query
made against the Lucene index using the query fields and entity values
computed by previously executed modules. A benefit to using Lucene is that
all the features from the source and target groups respectively can be

Implementing a Natural Language Processing Framework to Query OpenStreetMap Features in ArcGIS

17

identified without interacting with the geodatabase and without executing a
single SQL statement. The Lucene API includes a QueryParser method that
uses a string to to parse a Lucene index. Any documents that are returned by
the QueryParser are scored and ranked from highest to lowest. These scores
are higher when searching the name field for an entity than if searching the
generic field for the same value. This is due, in large part, because the query
terms are more closely matched with the contents of the Lucene name field
as it does not contain the additional OSM tag values.

A specialized class called ‘luceneDoc’ is used to store the results in a way
that can be processed by the Intersect Selections module. Each result from
the Lucene query result contains a feature ID from the geodatabase, the
feature type (e.g., POINT, LINE or POLYGON), and the contents from the
name and generic fields. Based upon how the index was written, all attribute
information is retained by the index and is recalled with the results. These
are then stored in an array of ‘luceneDoc’ objects and saved with the
‘phraseObject’ class. The output of this module are sets of features that have
been identified without any geodatabase interaction.

7) Intersect Selections

This module is responsible for selecting all features within the geodatabase
based upon the information contained in the ‘phraseObject.’ If the query
involves a spatial filter, the Intersect Selections module must map the spatial
preposition to the allowable topological relationships implemented in the
prototype. ArcGIS 10 currently supports a number of spatial selection
methods that allow a user to perform a ‘select by location’ query. A subset of
these represents topological relationships. As taken from the ArcGIS Help
Documentation, these comprise the underlying spatial query executed using
the ArcGIS API (ESRI, 2011). Table 2 lists the 2D spatial relationships and
includes a brief description about how they are implemented within ArcGIS.

Implementing a Natural Language Processing Framework to Query OpenStreetMap Features in ArcGIS

18

Geoprocessing	 Tool Description

INTERSECT Target	 layer(s)	 features	 intersect	 the	 Source	 layer	 feature

WITHIN_A_DISTANCE Target	 layer(s)	 features	 are	 within	 a	 distance	 of	 the	 Source	 layer	 feature

CONTAINS Target	 layer(s)	 features	 contains	 the	 Source	 layer	 feature

COMPLETELY_CONTAINS Target	 layer(s)	 features	 completely	 contain	 the	 Source	 layer	 feature

CONTAINS_CLEMENTINI Target	 layer(s)	 features	 contains	 (Clementini)	 the	 Source	 layer	 feature

WITHIN Target	 layer(s)	 features	 are	 within	 the	 Source	 layer	 feature

COMPLETELY_WITHIN Target	 layer(s)	 features	 are	 completely	 within	 the	 Source	 layer	 feature

WITHIN_CLEMENTINI Target	 layer(s)	 features	 are	 within	 (Clementini)	 the	 Source	 layer	 feature

ARE_IDENTICAL_TO Target	 layer(s)	 features	 are	 identical	 to	 the	 Source	 layer	 feature

BOUNDARY_TOUCHES Target	 layer(s)	 features	 touch	 the	 boundary	 of	 the	 Source	 layer	 feature

SHARES_A_LINE_SEGMENT_WITH Target	 layer(s)	 features	 share	 a	 line	 segment	 with	 the	 Source	 layer	 feature

CROSSED_BY_THE_OUTLINE_OF Target	 layer(s)	 features	 are	 crossed	 by	 the	 outline	 of	 the	 Source	 layer	 feature

HAVE_THEIR_CENTER_IN Target	 layer(s)	 features	 have	 their	 centroid	 in	 the	 Source	 layer	 feature

Table 1 - ArcGIS 2D Spatial Relationship Geoprocessing Tools

The prototype only supports the following prepositions: IN and ON.
Therefore, a C# switch statement is used to select the appropriate filter
relationship based upon the preposition. This switch statement can be
modified to support additional topological relationships as functionality is
expanded. For the time being, IN and ON are mapped to the CONTAINS
topological relationship. ESRI exposes these spatial relationship types
through the ISpatialFilter interface included as part of the ArcObjects SDK
for .Net.

The geometries are first selected in the point layer and polygon layer using
only the feature IDs contained within the ‘phraseObject’ class. If both point
and polygon features are selected, the spatialFilter object is constructed using
the geometries from the polygon features and intersected with the geometries
from the point features. The results return only those point features that are
completely contained by the polygon features. The dialog is updated with the
information from the returned features and the map display is refreshed to
highlight the point and polygon features that satisfied the topological
relationship

In the event that the spatialFilter object cannot find any features that satisfy
the topological relationship, a notification is presented to the user that
indicates no features were found.

Implementing a Natural Language Processing Framework to Query OpenStreetMap Features in ArcGIS

19

IV. Search Example

Point/Polygon Spatial Search

The following highlights how the system processes a spatial search in which the
user inputs the following query string: ‘Where are the Starbucks in Riverside?’

As previously described, the Query Processing Pipeline tokenizes the query string
and processes the words using both the POS Tagger and the NER Tagger.
‘Starbucks’ is identified as a proper noun singular (NNP), ‘in’ is identified as a
preposition/ subordinating conjunction (IN) and ‘Riverside’ is identified as a proper
noun singular (NNP). The NER Tagger recognizes ‘Starbucks’ as an Organization
and Riverside as a Location. Finally, the query string is identified as a spatial search
because the POS Tagger located the preposition ‘in.’

Next the string is divided into a source phrase and target phrase respectively. In this
example, the source phrase is ‘Where are the Starbucks’ and the target phrase is
‘Riverside.’ Because Starbucks is recognized as an organization, the Lucene index
for the POINT feature class is searched using the ‘name‘ field. The Lucene index
returns 141 records for Starbucks POINT features.

The only valid feature class for the target phrase is POLYGON; therefore and
because Riverside was recognized as a Location, the Lucene index for the
POLYGON feature class will be searched using the ‘name‘ field. Only 1 hit is
returned for the POLYGON feature class. The spatial preposition ‘IN’ maps to the
CONTAINS topological relationship and is used with the ArcGIS spatialFilter class for
both the currently selected POINT and POLYGON features.

Figure 12 depicts the OpenStreetMap tiles for Los Angeles, California and the NLP
Search Form with the example search string entered.

Implementing a Natural Language Processing Framework to Query OpenStreetMap Features in ArcGIS

20

Figure 12 – OpenStreetMap Depicting Los Angeles, CA
© OpenStreetMap and contributors (CC-BY-SA)

Implementing a Natural Language Processing Framework to Query OpenStreetMap Features in ArcGIS

21

When the user hits return after entering the search string, all Starbucks are selected
as depicted in Figure 13.

Figure 13 - OSM Point Features with Starbucks Cafes Highlighted
© OpenStreetMap and contributors (CC-BY-SA)

The Target Feature Class is searched using the target selection string as in “name
Riverside.” This results in a single polygon feature being selected for the Riverside.
Figure 14 depicts the selected Riverside polygon.

Figure 14 - OSM Polygon Features with the Riverside Boundary Highlighted
 © OpenStreetMap and contributors (CC-BY-SA)

Implementing a Natural Language Processing Framework to Query OpenStreetMap Features in ArcGIS

22

With both source and target features selected, the spatialFilter is applied using the
‘CONTAINS’ topological relationship type. The result of this spatialFilter operation is
depicted in Figure 15 that shows the two Starbucks that lie inside the Riverside
polygon. The NLP Search Application dialog window is also updated to show the
feature attribute information for the two Starbucks highlighted on the map display.

Figure 15 - Two Starbucks Located within the Riverside Boundary Polygon Feature
© OpenStreetMap and contributors (CC-BY-SA)

V. Conclusions

There are a number of conclusions that can be drawn from the development of this
prototype framework. Perhaps the most significant is that NLP tools can be
integrated into ArcGIS desktop to support GIS queries that are not possible in SQL.
This was demonstrated through the simple example that performed a basic spatial
search using a natural language query.

Furthermore, the prototype framework has reduced the number of steps required for
a basic spatial search from more than 10 to 3. This greatly simplifies a basic spatial
filter operation to the point where a casual user could interact with the framework.

Implementing a Natural Language Processing Framework to Query OpenStreetMap Features in ArcGIS

23

Finally, the performance of the Lucene index was faster and more flexible than a
generic ‘like’ SQL search. By exposing the index outside the geodatabase, a more
generic interface can be written that does not require the ArcGIS SDK for basic
feature searches. This also takes advantage of Lucene's inverted index architecture
for fast information retrieval.

VI. Future Work

This paper describes a prototype capability that incorporates Natural Language
Processing tools into the ArcGIS Desktop application. Beyond the expanded search
capability, the prototype introduces a framework within which NLP functionality can
be expanded to handle more complex query strings and a larger set of spatial
prepositions.

Based upon Coventry and Garrod’s preposition taxonomy, the next logical group of
prepositions to support include those described as proximity terms such as near and
far. The ambiguity of these prepositions makes it challenging to determine a
standard distance when calculating a proximity between multiple features. However,
the use of minimum bounding rectangles offer one possible solution in situations
where the closeness of a point or line feature to a polygon feature is being tested.
Point to point proximity will require a different method to set a distance by which one
feature is determined to be near or far from another feature. In this case, some form
of user interaction may be necessary.

The number of supported geometry types can also be expanded to include lines and
polygons such that POLYGON/POLYGON, POINT/LINE and LINE/POLYGON
relationships can be discovered. Determining when one polygon is ‘in’ another
polygon can be implemented in the current framework through the use of temporary
feature classes. These can be cloned from the basic OSM feature classes to
support feature selection and the spatial filtering process.

Finally, integrating tools that support more robust sentence parsing should allow for
fine-grained processing and a greater understanding of the query string when it
contains multiple prepositions, descriptors and word dependencies. For example,
an expanded application would need to analyze “Find all the Starbucks in Riverside
that are near a gas station” and understand it contains two prepositions and that
‘near a gas station’ refers to ‘Starbucks’ and not ‘Riverside.‘ Stanford, the NLTK and
GATE have tools that can perform this type of sentence parsing. These tools could
support more complex natural language searches and greatly enhance the
prototype’s utility.

Implementing a Natural Language Processing Framework to Query OpenStreetMap Features in ArcGIS

24

VII. References

Hall, M. M., & Jones, C. B. (2008). Quantifying spatial prepositions. Proceedings of the 16th
ACM SIGSPATIAL international conference on Advances in geographic information
systems GIS 08 (p. 1). ACM. Retrieved from http://dx.doi.org/10.1145/1463434.1463507

Garrod, S., & Coventry, K. (2004). Saying, Seeing, and Acting: the Psychological
Semantics of Spatial Prepositions. Essays in Cognitive Psychology series. Psychology
Press.

NLTK (2013). NLTK 2.0 Documentation. Retrieved from http://nltk.org/.

Stanford (2013). The Stanford Natural Language Processing Group CoreNLP. Retrieved
from http://www-nlp.stanford.edu/software/corenlp.shtml.

GATE (2013). General Architecture for Text Engineering. Retrieved from http://gate.ac.uk.

OpenStreetMap (2013). Open Database License. Retrieved from http://
wiki.openstreetmap.org/wiki/Open_Database_License

Four Square Blog (2012, February 29). Foursquare is joining the OpenStreetMap
movement! Say hi to pretty new maps! Retrieved from http://blog.foursquare.com/
2012/02/29/foursquare-is-joining-the-openstreetmap-movement-say-hi-to-pretty-new-maps/

Bennett, J. (2012, March 8). Welcome Apple. Retrieved from http://
blog.osmfoundation.org/2012/03/08/welcome-apple/

Kordjamshidi, P., Hois, J., van Otterlo, M., Moens, M. Learning to Interpret Spatial Natural
Language in Terms of Qualitative Spatial Relations (2011), (book chapter, to appear/
submitted).

Jaiswal, A., Pezanowski, S., Mitra, P., Zhang, X., Xu, S., Turton, I., Klippel, A., MacEachren,
A. (2011). GeoCAM: A geovisual analytics workspace to contextualize and interpret
statements about movement. Journal of Spatial Information Science, 3(3), 65-101.
Retrieved from http://josis.org/index.php/josis/article/view/55.

MongoDB (2013). MongoDB. Retrieved from http://www.mongodb.org/.

Apache Lucene (2013). Welcome to Apache Lucene. Retrieved from http://
lucene.apache.org/.

MacEachren, A. , Jaiswal A., Robinson A., Pezanowski S., Savelyev A., Mitra P., Zhang X.,
Blanford J. (2011). SensePlace2: GeoTwitter Analytics Support for Situational Awareness.
IEEE Conference on Visual Analytics Science and Technology [Internet]. Retrieved from:
http://www.geovista.psu.edu/publications/2011/MacEachren_VAST_2011_reducedsize.pdf

Implementing a Natural Language Processing Framework to Query OpenStreetMap Features in ArcGIS

25

http://nltk.org/
http://nltk.org/
http://www-nlp.stanford.edu/software/corenlp.shtml
http://www-nlp.stanford.edu/software/corenlp.shtml
http://gate.ac.uk
http://gate.ac.uk
http://wiki.openstreetmap.org/wiki/Open_Database_License
http://wiki.openstreetmap.org/wiki/Open_Database_License
http://wiki.openstreetmap.org/wiki/Open_Database_License
http://wiki.openstreetmap.org/wiki/Open_Database_License
http://blog.foursquare.com/2012/02/29/foursquare-is-joining-the-openstreetmap-movement-say-hi-to-pretty-new-maps/
http://blog.foursquare.com/2012/02/29/foursquare-is-joining-the-openstreetmap-movement-say-hi-to-pretty-new-maps/
http://blog.foursquare.com/2012/02/29/foursquare-is-joining-the-openstreetmap-movement-say-hi-to-pretty-new-maps/
http://blog.foursquare.com/2012/02/29/foursquare-is-joining-the-openstreetmap-movement-say-hi-to-pretty-new-maps/
http://blog.osmfoundation.org/2012/03/08/welcome-apple/
http://blog.osmfoundation.org/2012/03/08/welcome-apple/
http://blog.osmfoundation.org/2012/03/08/welcome-apple/
http://blog.osmfoundation.org/2012/03/08/welcome-apple/
http://josis.org/index.php/josis/article/view/55
http://josis.org/index.php/josis/article/view/55
http://www.mongodb.org/
http://www.mongodb.org/
http://lucene.apache.org/
http://lucene.apache.org/
http://lucene.apache.org/
http://lucene.apache.org/
http://drupal.geovista.psu.edu/biblio?f%255bauthor%255d=5
http://drupal.geovista.psu.edu/biblio?f%255bauthor%255d=5
http://drupal.geovista.psu.edu/biblio?f%255bauthor%255d=6
http://drupal.geovista.psu.edu/biblio?f%255bauthor%255d=6
http://drupal.geovista.psu.edu/biblio?f%255bauthor%255d=2
http://drupal.geovista.psu.edu/biblio?f%255bauthor%255d=2
http://drupal.geovista.psu.edu/biblio?f%255bauthor%255d=9
http://drupal.geovista.psu.edu/biblio?f%255bauthor%255d=9
http://drupal.geovista.psu.edu/biblio?f%255bauthor%255d=7
http://drupal.geovista.psu.edu/biblio?f%255bauthor%255d=7
http://drupal.geovista.psu.edu/biblio?f%255bauthor%255d=8
http://drupal.geovista.psu.edu/biblio?f%255bauthor%255d=8
http://drupal.geovista.psu.edu/biblio?f%255bauthor%255d=10
http://drupal.geovista.psu.edu/biblio?f%255bauthor%255d=10
http://drupal.geovista.psu.edu/biblio?f%255bauthor%255d=3
http://drupal.geovista.psu.edu/biblio?f%255bauthor%255d=3
http://www.geovista.psu.edu/publications/2011/maceachren_vast_2011_reducedsize.pdf
http://www.geovista.psu.edu/publications/2011/maceachren_vast_2011_reducedsize.pdf
http://www.geovista.psu.edu/publications/2011/maceachren_vast_2011_reducedsize.pdf
http://www.geovista.psu.edu/publications/2011/maceachren_vast_2011_reducedsize.pdf

Toutanova, K., Klein, D., Manning, C., and Singer, Y. (2003). Feature-Rich Part-of-Speech
Tagging with a Cyclic Dependency Network. In Proceedings of HLT-NAACL 2003, pp.
252-259.

IKVM (2013). IKVM.Net Home Page. Retrieved from http://www.ikvm.net/.

Marcus, M. P., Santorini, B., & Marcinkiewicz, M. A. (1993). Building a Large Annotated
Corpus of English: The Penn Treebank. Computational Linguistics, 19(2), 313-330.
Retrieved from http://citeseer.ist.psu.edu/marcus04building.html

Finkel, J., Grenager, T, Manning, C. 2005. Incorporating Non-local Information into
Information Extraction Systems by Gibbs Sampling. Proceedings of the 43nd Annual
Meeting of the Association for Computational Linguistics (ACL 2005), pp. 363-370.http://
nlp.stanford.edu/~manning/papers/gibbscrf3.pdf

OpenStreetMap Wiki (2012). Nominatim. Retrieved from http://wiki.openstreetmap.org/
wiki/Nominatim

ESRI ArcGIS 10.0 Help: Select by location- graphic examples (2012). ESRI, Redlands,
California. Retrieved from http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#//
0017000000tp000000

Implementing a Natural Language Processing Framework to Query OpenStreetMap Features in ArcGIS

26

http://nlp.stanford.edu/~manning/papers/tagging.pdf
http://nlp.stanford.edu/~manning/papers/tagging.pdf
http://nlp.stanford.edu/~manning/papers/tagging.pdf
http://nlp.stanford.edu/~manning/papers/tagging.pdf
http://www.ikvm.net/
http://www.ikvm.net/
http://citeseer.ist.psu.edu/marcus04building.html
http://citeseer.ist.psu.edu/marcus04building.html
http://nlp.stanford.edu/~manning/papers/gibbscrf3.pdf
http://nlp.stanford.edu/~manning/papers/gibbscrf3.pdf
http://nlp.stanford.edu/~manning/papers/gibbscrf3.pdf
http://nlp.stanford.edu/~manning/papers/gibbscrf3.pdf

