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Abstract 

The methods by which we model the Earth’s subsurface will always necessitate some form of 

interpolation. Further, inaccurate interpolation of subsurface geology can lead to wasted money and 

resources. This study compares the results of both linear and geostatistical interpolation methods 

utilizing a large sampling of boreholes drilled for a subsurface rock investigation at our study site in 

coastal Central America. 

 

One way to determine the accuracy of an interpolated surface is to compare the values from the surface 

to additional values collected in the field. In this study, we divide a total population of nearly 500 

borings into two parts; a random sampling of 75% of the borings are used as an input to each of the 

interpolated surfaces, and the remaining 25% are used to assess the surface’s accuracy. The linear 

interpolation method takes the larger 75% sampling of points, generates a triangulated irregular 

network (TIN), and converts the TIN to a raster. The same 75% sampling are also used to develop a 

surface through kriging interpolation, a geostatistical method. We then compare each interpolated 

surface to the values from the remaining 25% sample not used to generate the surface. 

 

The accuracy of each surface was determined through the use of a three-dimensional root mean square 

error (RMSE) method.  This workflow was used to create multiple iterations of each surface using a 

different random sampling for each scenario and allowing summary statistics to be evaluated across the 

study.  Our results concluded that there was not a statistically significant difference in RMSE values 

when comparing the linear and geostatistical interpolation surfaces.  We were able to achieve nearly 

identical results from both interpolation methods. 

 

Introduction 
The utilization of spatial statistics and modern day computing in subsurface mapping has introduced 

advancements in the way we analyze, explore and ultimately interpolate a surface.  Traditional linear 

interpolation methods will always have a practical application in subsurface mapping. They are exact 

interpolators, easily understood and have an application to a wide variety of industries and use cases. In 

recent decades, however, geostatistical interpolations have found their way into modern geographic 

information systems (GIS) and statistical software packages. These alternate interpolations methods are 

not without challenge and their implementation requires a thorough understanding of the spatial 
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distribution of one’s data. Our study aims to show that geostatistical methods are a viable alternative to 

traditional linear interpolation methods by quantitatively comparing interpolated and actual values of a 

subsurface geologic layer. 

 

GIS software packages have become so increasingly user friendly over the past decade that the end user 

no longer requires an in-depth knowledge base to perform many common analyses.  Using kriging as an 

example, there are numerous types of kriging methods; ordinary, universal and simple just to name a 

few (O’Sullivan, 2010, p310).   There are dozens of different models for fitting a semi-variogram, and 

each model has an infinite range of parameters to select from.  Yet launching a typical commercial 

package for this interpolation type will yield with one click a kriging surface after every input parameter 

has been populated with a default value.  The truth is, the integration of well-designed GUI’s, simplified 

tool kits and the population of default parameters to make spatial processes execute without failure has 

grown such that anyone can perform simple to complex spatial operations with ease.  Building from the 

fundamental concept of interpolation this paper illustrates that geostatistical interpolation is a viable 

alternative to linear interpolation and when thoughtful consideration is given to input parameter 

selection they can yield similar results. 

 

Background 
After a review of numerous source documents its apparent that no one interpolation method fits all 

scenarios nor is one necessarily better than the other.  Rather it is a thorough understanding of the 

input dataset and the ability to select the most appropriate method for interpolation for a particular 

case.  Each method has its pros and cons; however selection of appropriate parameters and an 

understanding of each for justification of its selection is the single most important aspect of spatial 

interpolation.  (Chang, 2009). 

 

An infinite combination of interpolation parameters and methods exists to deduce a surface from a set 

of sampled data.  The question of which interpolation method is most appropriate has been debated as 

long as more than one method has existed.  In this study we seek to compare two separate methods of 

interpolation and quantify the differences and errors between them.  Linear interpolation through the 

use of a Triangular Irregular Network (TIN) was compared to the kriging method.  This study compared 

the two methods to each other for subsurface rock layers found on a small site in Central America. 

  2 
 



 

 

The first surface method to be explored is linear interpolation from a TIN.  The TIN interpolation utilizes 

the Delauney triangulation method by drawing straight lines between data points to create a framework 

of non-overlapping triangles covering the study area.  Typically linear interpolation is then used to 

generate a surface of a site (Yalmiz, 2007, p1352).  The TIN algorithm is the most simplistic of all surface 

generation methods.  It is an exact interpolator and is best used when the data are evenly distributed 

over the project area (Yalmiz, 2007, p1353).  Interpolation techniques such as inverse distance weighting 

and basic linear interpolation have a place in approximating a subsurface, but when additional criteria 

can be inferred from a given data set and particularly where the data have high natural variability 

(Virdee, 2009, p370) the use of more advanced interpolation techniques should be considered.  One of 

these approaches is the kriging interpolation method.  For our purposes we refer to the kriging 

algorithm as the more advanced interpolation method because its mathematics are more complex, it 

allows for the input of a greater number variables and has multiple sub-methods of interpolation that 

are not found with the linear interpolation method.  The application of kriging for subsurface 

interpolation and mapping has been used for decades and was first developed in the 1960's within the 

gold mining industry of South Africa.  Since this time it has further evolved into its own field of 

geostatistics and incorporates a distance weighting approach to interpolation along with an expert 

knowledge of the spatial structure and trends of the study site (O'Sullivan, 2010, p294).    Kriging 

interpolation works in a similar manner to inverse distance weighting algorithms in the sense that it 

utilizes the surrounding measured values to interpolate the unknown (Yalmiz, 2007, p1349).  Kriging can 

be used when data are irregularly spaced and can be either a smooth or exact interpolator.  Also, there 

are two variations of the kriging method, that of Ordinary and Universal kriging (Yalmiz, 2007, p1349).  

In order to use the kriging interpolation algorithm correctly one must assess the problem in three 

separate but sequential steps.  Step one is to evaluate the spatial variation in the sample data; step two 

is to summarize the spatial variation with a mathematical function; and step three is to use this function 

to determine the interpolation weights (O'Sullivan, 2010, p.294).  With the nature of the spatial 

variability defined one can then proceed through the interpolation process. 

 

Today kriging is widely found in the geologic, mining and surface mapping fields with a variety of use 

cases.  Applications have been linked to subsurface geologic interpretation, mineral investigations, 

(Virdee, 2009) observation well placement and hydraulic conductivity and transmissivity modeling 
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(Samui, 2011).  Some advantages to the kriging methodology include its flexibility, the fact the weighting 

is not selected arbitrarily and also the use of the semi-variogram as the model for characterizing spatial 

variability or auto-correlation (Samui, 2011, p886).  Kriging has been used reliably to determine rock 

depth in numerous areas of the world and used widely for many other applications.  While kriging 

clearly has practical applications to a wide variety of fields both in and out of the geologic industry, its 

use must be met with caution in the selection of variables and parameters when concluding the trends 

and spatial structures of a particular data sets (Meyer, 2004, p1). 

 

The background information for both of these surface generation techniques is plentiful.  The literature 

on TIN algorithms and the simplicity of their implementation was directly applicable to this study.  It 

allowed for a conceptual understanding of the interpolation method and its practical application for my 

use.  Alternatively, the kriging topic has a tendency to become immediately detail driven and study 

specific without a good discussion of the fundamentals of the interpolation method. Thus 

documentation of kriging fundamentals is more likely found in textbooks than scholarly articles.   

 

Methodology 

One of the most fundamental ways to determine the quality of an output surface is to compare the 

values from the interpolated surface to other values of the surface collected in the field.  Since logistical 

challenges, finances and countless other variables all prohibit revisiting the field site to recollect data, an 

alternative approach is to subdivide your original sampling of data at the onset of your modeling.  The 

goal is to utilize a larger subset to develop a surface, and a smaller subset to compare and validate the 

modeled surface (Esri Help, 2015(subset tool)).  In an effort create a reproducible and iterative 

methodology two nearly identical workflows were developed using the Python programming language 

and the Esri ArcGIS Geostatistcal Analyst Extension.  These iterative methodologies were used to 

evaluate the accuracy of both the geostatistical and linear interpolation methods. 

 

Overview 

Beginning with the entire sampling of borings a subset was selected to interpolate each surface.  This 

study has chosen to use 75% of the sample as an input to each of the interpolated surfaces.  The 

remaining 25% sample were used as a quality control and validation data set once the surfaces were 

created.  Utilizing the Esri subset features tool the data were divided into two different data sets.  To be 
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more specific, starting with a sampling of 410 borings, 307 borings (75%) were randomly selected to 

interpolate a surface using both a kriging geostatistical interpolation method and a linear interpolation 

from a TIN method.  Because of the randomness of the subset process described above a different 

sampling of borings is created each time the point features are generated.  This is advantageous for two 

reasons.  First, the generation of numerous surfaces from random samplings of the same inputs are 

possible.  Second, with these multiple surfaces generated from the different input samplings, the quality 

control process can draw conclusions from a statistically significant pool of results and not just a 

comparison of two surfaces. 

 

With the subset of borings defined, the training sampling of points was used to generate a TIN and for 

simplicity of comparing two surfaces no break lines or additional features were used to supplement the 

TIN’s creation.  This TIN was then converted to a raster surface through a linear interpolation method.  

Then, using the same subset of borings, the training sampling of points was used to generate the surface 

with kriging. 

 

Those methods found above are part of a workflow that was run 999 times.  The objective was to 

develop a statistical sampling of surfaces.  If the comparison of one linear interpolation surface to one 

kriging surface showed similar results, a number of questions could be asked of the method by which 

the surfaces were created, the input parameters that were chosen and the significance of those results.  

However, if the kriging surfaces showed better results more often than the linear interpolation and the 

results of statistical testing between the RMSE values proved significant it would indicate that it is the 

preferable interpolation method. 

 

Once created, each surface was subjected to identical quality control methods and the results were 

aggregated for statistical review.  Since the training sampling of the borings were used to generate the 

input surfaces the test sampling which remain can be used to measure the difference between the 

interpolated surfaces and measured values at the locations of these test samples.  These differences can 

then be compared against not only the actual measured value but also the differences can be compared 

against each other to assess which interpolation method generated a more accurate surface. 

 

Accordingly, this study included a comparison of the statistics of all the linear and geostatistical results.  

A table was structured such that it summarized the residuals of each interpolation method against the 

  5 
 



actual value along with maximum, minimum, mean and standard deviation of all points from both 

surfaces when compared to the actual surface values.  These data were representative of the entire 

study from all simulations.  They were then reviewed through visual means such as histograms or other 

plots.  In addition to the summary statistics, an RMSE for each interpolation method was developed.  

After one simulation, calculate the RMSE for each interpolated surface (once for the linear, once for the 

geostatistical).  After doing this for every run in the study, conclude which RMSE value was more 

frequently lower.  The final statistical validation is to test for statistical significance of the results.  A 

combination of F and T tests were used to validate the statistical significance of the results. 

 

Data Preparation 

The data preparation phase of this study ensured quality surfaces.  Since some of the data points were 

nearly 70 years old with questionable collection methods and others were collected more recently 

precedence was given to the more current boring if adjacent borings were contradictory.    The Esri 

Geostatistical Analyst Wizard was also used to review the spatial distribution of the dataset.  It has a 

variety of means to evaluate and review the distribution of data.  These included a review of histograms 

and trend analysis to look for anomalies in the data sets.  After a cursory review of the data, the primary 

means for review of the data was a visual inspection along with a semi-variogram plot.  The plotting of 

the values along the semi-variogram identified the spatial auto-correlation of each pair of points and 

was an indicator of those which were potential outliers.  Working through the Esri Geostatistical Analyst 

Wizard, a graphical review of the semi-variogram, covariance and cross validation plots were used to 

review the data distribution.  In addition to the graphical review the tabular summary from the cross 

validation check proved to be useful in further identifying outliers.  These reviews resulted in the 

removal of 23 points from my dataset decreasing the original dataset from 433 to 410 borings – which 

were used as inputs into this study. 

 

Subset 

After completing a review of the spatial distribution of the entire dataset the process of subsetting the 

data was employed.  The data was broken into subsets using the Esri Geostatistical Analyst Toolbox; 

Utilities tool kit and the Subset Features tool.  The subset tool does exactly what it implies and divides 

the original dataset into two parts.  The first is used as an input to the surface and the second is used to 

cross validate the output surface.  For our analysis our dataset was subset at 75% and 25% for the input 

and validation sets. 
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Linear Interpolation 

To construct a linearly interpolated surface the input points were used to create a Triangulated Irregular 

Network (TIN).  The input points were utilized as mass points such that each point and elevation value 

represented a single node in the TIN Surface.  These points were the only input to the TIN surface and 

no supplemental break lines or points were included.  Additionally, the TIN surface was created with 

Delaunay constrained triangulation.  This means that each segment created between nodes is 

represented as a single edge, not densified and eliminates the creation of many small triangles (Esri 

Help).  After the TIN generation was complete each TIN surface was converted to a raster surface.  It is 

important to note that the conversion from TIN to raster introduced a surface that no longer exactly 

passed through the elevation values used to create the TIN.  The raster surface was created with a cell 

size of ten meters square and proved to be reasonable for optimizing file sizes, processing speeds and 

data coverage.  The cell size was also used to preserve the average spacing of the borings in an effort 

not to over or undersample the density of the data when converting to a raster.  The TIN was converted 

to a raster through linear interpolation.  This meant that the TIN triangle faces are all viewed as planes 

and each raster cell is assigned a value by finding the elevation within the plane which intersects the 

center of each raster cell. (Esri Help, 2015).  

 

Geostatistical Interpolation   

The geostatistical interpolation in this study required the spatial distribution of the dataset to be 

evaluated prior to interpolation.  In parallel with the original review of the data this distribution was 

evaluated for input to the geostatistical interpolation.  A single model was created from a combination 

of input and assessment points and then fit to the semi-variogram.  To construct the geostatistical 

interpolation surface the input points were convert to a surface utilizing the optimized model described 

below and an Ordinary Kriging methodology. 

 

Parameter Selection 

The parameter selection for the geostatistical interpolation consisted of those values shown below.  Of 

primary interest are values for the nugget, range and sill along with measurement error as they are 

major drivers of the kriging interpolation method.  
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Method Kriging 

Type Ordinary 

Output Type Prediction 

Dataset # 1 

Trend Type None 

     Searching Neightborhood Standard 

     Neighbors to include 5 

     Include at least 2 

     Sector type Four and 45 degree 

     Major semiaxis 1,025.650158 

     Minor semiaxis 1,025.650158 

     Angle 0 

Variogram Semivariogram 

Number of lags 12 

Lag Size 128.206269 

Nugget 2.857811 

Measurement error % 0 

     Model type Exponential 

     Range 1,025.650158 

     Anisotropy None 

     Partial Sill 107.285091 

 

Table 1:  Input modeling parameters used for the geostatistical interpolation 

 

Evaluation 

The assessment points were used to extract values from both the kriging and linearly interpolated 

surfaces and compare their interpolated values to the elevation values at each boring not used in the 

interpolation.  The accuracy of each interpolated surface was then determined through the use of a 

three-dimensional root mean square error (RMSE).  Each RMSE statistic was written to a summary table 

that documented 999 iterations of each interpolation method.  Finally, a combination of F and T tests 

were used to conclude which interpolation method more often resulted in a lower RMSE.  Utilizing the 

Microsoft Excel Data Analysis Add-In, the F-Test Two-Sample for Variances analysis tool is used to 

compare two sample variances, in this case the RMSE statistic from both the linear and geostatistical 

interpolation methods.  The statistic indicates whether or not the two samples come from distributions 
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with equal variances (Microsoft Excel Help, 2015).  Knowing the variances of our RMSE values are equal 

we can further evaluate the data with the use of a T-Test.  The Two-Sample t-Test with Equal Variance 

analysis tool tests whether or not the means that underlie each sample are equal. (Microsoft Excel Help, 

2015).  The result of the T-Test is a p value which is used as a measure of statistical significance for 

concluding the results.  Utilizing the Python code developed for this project and presented in Appendix 

A, the entire methodology section described above; subset, linear interpolation, geostatistical 

interpolation and evaluation were each performed 999 times to then be summarized and reviewed. 

 

Results 

These results discuss the study findings in detail and use specific terminology when referencing each 

datasets.  An understanding of the terminology and definition of each point and surface relationship will 

aid the reader in their interpretation of the results.  These relationships are illustrated in the following 

two figures. 

 

 
Figure 1:  Graphic of one scenario of borings (100%), input borings (75%) and validation borings (25%) 

 
Figure 2:  Graphic of one scenario of input borings (75%) and validation borings (25%) with a linearly 

interpolated surface.  75% Input on the left was used to create the interpolated surface while the 25% 

validation on the right is used to compare actual to interpolated values.  The exact same concept was 

applied for the geostatistical interpolation (not shown). 
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In an effort to validate our interpolated surfaces we ensured that all surfaces for both the geostatistical 

and linear interpolation methods conformed to the input boring elevations and concluded that an 

average RMSE of less than one meter for each surface was achieved.  When evaluating against the input 

borings, the linear interpolation surface averaged a lower RMSE, 0.812 meters, than the geostatistical 

one, 0.988 meters. 

 

  Maximum Minimum Range 

Standard 

Deviation Average Count 

Linear 1.693667 0.394612 1.299055 0.166126853 0.812565 910 

Kriging 1.163498 0.78811 0.375388 0.07195292 0.988534 89 

Table 2:  Summary of RMSE results after comparing interpolated surfaces to the (75%) input points used 

for creating them. 

 

When testing against the validation points not used for the interpolation our results illustrate that after 

999 runs of the model the geostatistical interpolation resulted in a lower root mean standard error 

(RMSE) more often than the linear interpolation.  The geostatistical interpolation showed a lower RMSE 

552 times while the linear interpolation resulted in lower RMSE 447 times.  We also compiled all the 

25% validation points for each of the 999 scenarios and calculated the RMSE using the entire sampling of 

96,931 borings.  Geostatistical interpolation again returned a lower RMSE, with a value of 3.991 meters 

versus a linear interpolation RMSE of 4.028 meters. 

 

  Maximum Minimum Range 

Standard 

Deviation Average Count 

RMSE 

Linear 6.956974 2.48974 4.467233 0.62566453 3.980512 447 

RMSE 

Kriging 6.647833 2.474804 4.173029 0.625840782 3.94255 552 

Table 3:  Summary of RMSE results after comparing interpolated surfaces to the (25%) validation points 

withheld when creating them. 
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Figure 3:  Histogram plot of RMSE values associated with the geostatistical interpolation 

 

 
Figure 4: Histogram plot of RMSE values associated with the linear interpolation  

 

In addition to the RMSE evaluation a statistical review of the results was also performed using a 

combination F and T tests.  The F test illustrated equal variance among the RMSE values for each surface 

type and the T-test evaluated for statistical significant.  Among the surfaces being evaluated for RMSE 

(N=999), there was no statistically significant difference between linear interpolation RMSE (M = 3.9805, 

SD = 0.62566) and geostatistical interpolation (M = 3.9425, SD = 0.62584), t(1996) = -1.3558 >= .05, CI95 

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0
20
40
60
80

100
120
140
160
180

2
2.

25 2.
5

2.
75 3

3.
25 3.

5
3.

75 4
4.

25 4.
5

4.
75 5

5.
25 5.

5
5.

75 6
6.

25 6.
5

6.
75 7

Fr
eq

ue
nc

y

RMSE

Geostatistical Interpolation RMSE

Frequency

Cumulative %

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0

50

100

150

200

2
2.

25 2.
5

2.
75 3

3.
25 3.

5
3.

75 4
4.

25 4.
5

4.
75 5

5.
25 5.

5
5.

75 6
6.

25 6.
5

6.
75 7

Fr
eq

ue
nc

y

RMSE

Linear Interpolation RMSE

Frequency

Cumulative %

  11 
 



-0.0170, 0.0929.  Therefore, we fail to reject the null hypothesis that there is no difference in RMSE in 

values between linear and geostatistical interpolation. 

F-Test Two-Sample for Variances 

  RMSE Kriging RMSE Linear 

Mean 3.942550073 3.98051151 

Variance 0.391676685 0.391456104 

Observations 999 999 

df 998 998 

F 1.000563489 

P(F<=f) one-tail 0.496451102 

F Critical one-tail 1.109804075 

Table 4:  Results of F Test 

 

t-Test: Two-Sample Assuming Equal Variances 

  RMSE Kriging RMSE Linear 

Mean 3.942550073 3.98051151 

Variance 0.391676685 0.391456104 

Observations 999 999 

Pooled Variance 0.391566394 

Hypothesized Mean Difference 0 

df 1996 

t Stat -1.355837612 

P(T<=t) one-tail 0.087652107 

t Critical one-tail 1.645617395 

P(T<=t) two-tail 0.175304214 

t Critical two-tail 1.961153206 

Table 5:  Results of T Test 

 

Interpolation n Mean SD t df p 95% Confidence Interval 

Linear 999 3.9805 0.1532 – – – – 

Geostatistical 999 3.9426 0.1534 – – – – 

Total 1998 3.9615 0.1533 -1.3558 1996 0.1753 -0.017 - 0.0929 

Table 6:  Summary results of statistical significance testing 
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Discussion 

There were a number of steps in the methodology in which a decision was made to choose a given 

parameter for the modeling, some of which may have erred in favor of one method or another.  The 

selection process was not intended to skew results in anyway but rather in many cases it was out of 

necessity and due to the complexity of the model.  The largest concern with the methodology developed 

was that given the repetitive nature of my method, modeling the semi-variogram repeatedly and 

automatically defining parameters was not feasible.  As such, a single semi-variogram was modeled for 

the entire dataset and then applied to each geostatistical surface.  This possibly gave the geostatistical 

interpolation an advantage over the linear interpolation since the model to fit the surface was being 

developed from the entire dataset including those points which are then used for validation.   

 

The selection of model parameters for the geostatistical interpolation could have likewise skewed the 

results one way or another.  The most noticeable parameter to change my results was the measurement 

error.  The measurement error ranges from 0 to 100% and toggling this variable allowed the 

geostatistical surface to more closely fit the input points (0%) or not as closely (100%).  When ensuring 

the geostatistical surface more closely fit the input points (measurement errors 0%) the RMSE went up 

for the validation points.  This indicates that while geostatistical interpolation can be used to rigidly 

define the surface it is a better predictor of inexact interpolation or more of a global interpolator.  In an 

effort to model similar scenarios and also approach this from a justification of the surface perspective, I 

found it more appropriate to ensure the geostatistical surface passed as closely as possible through the 

points, even at the expense of a larger RMSE. 

   

Yet another unavoidable source of error in the method was the conversion from TIN to raster.  By 

definition the conversion from a TIN to a raster results in a loss of precision.  Sampling size and raster 

cell size can help mitigate this issue but it will never be eliminated.  Due to this conversion the RMSE 

values could have been higher for the linear interpolation method especially if adjacent cells fell on a 

large transitional area in the TIN. 
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Summary 

The statistical results showed there was no significant difference between the two interpolation 

methods.  Accordingly, it cannot be said that one method is better than the other, rather they both have 

a practical application and the ability to yield highly similar results. 

 

Another variable complicating the outcome is the fact that kriging surfaces are hugely a function of their 

input parameters which possess a limitless combination of variables.  The selection of kriging 

parameters is driven by the spatial distribution of the input data and also by the desired outputs of the 

kriging method. 

 

Furthermore, even though both interpolation methods can be considered exact interpolators an 

evaluation against the input points illustrates linear interpolation does a better job of conforming to the 

source data than the geostatistical surface. 

 

An unexpected outcome of this study is documenting the similarities which were created between the 

two interpolation methods.  Assuming linear interpolation is the simpler method because it is derived 

from simpler mathematics and minimal input parameters, the fact we matched or exceeded its accuracy 

with the geostatistical surfaces for nearly every run, is a testament to the use of the geostatistical 

method and the parameters selected to create it. 
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Appendix 1 

Python Code used for interpolation and comparison of surfaces 

############################################################################################################################## 
#   Python code to interpolate and compare a series of surfaces against a subset of points 
#   Developed for Penn State Capstone Project GEOG596B 
#     
#   Author:  Daniel Hunter 
#   Contact:  DanielHunterGIS@gmail.com 
# 
#   Date:  June 2015 – December 2015 
############################################################################################################################## 
 
# Import arcpy module 
import arcpy 
import os 
import time 
arcpy.env.overwriteOutput = "True" 
 
# Check out any necessary licenses 
arcpy.CheckOutExtension("GeoStats") 
arcpy.CheckOutExtension("3D") 
arcpy.CheckOutExtension("spatial") 
 
startTime = time.time() 
 
# Local variables: 
srElevPt = r"C:\GIS\PSU\016_GEOG596B\FinalizedResults.gdb\M_SeriesBorings" 
inXml = r"C:\GIS\PSU\016_GEOG596B\FinalizedOrdinary.xml" 
 
############################################################################################################################## 
#   Establish a counter padded with zero's up to 1000 - This will be used for all naming convetions throughout the code... 
############################################################################################################################## 
 
# A list to store the results for merging 
pct25List = [] 
 
counter = 1 
while counter < 1000: 
    if counter < 10: 
        counterStr = "000" + str(counter) 
        print "Evaluating Scenario: " + counterStr 
    elif counter < 100: 
        counterStr = "00" + str(counter) 
        print "Evaluating Scenario: " + counterStr 
    elif counter < 1000: 
        counterStr = "0" + str(counter) 
        print "Evaluating Scenario: " + counterStr 
    elif counter == 1000: 
        counterStr = str(counter) 
        print "Evaluating Scenario: " + counterStr 
 
############################################################################################################################## 
#   Subset the points into a 25 and 75% sampling 
############################################################################################################################## 
 
    # Define 75 and 25 Percent Variables 
    sr = arcpy.Describe(srElevPt).spatialReference 
    srElevPt75 = arcpy.Describe(srElevPt).path +"\\pct75_pts_" + counterStr 
    srElevPt25 = arcpy.Describe(srElevPt).path +"\\pct25_pts_" + counterStr 
 
    # Create a subset of the features 
    arcpy.SubsetFeatures_ga(srElevPt, srElevPt75, srElevPt25, "75", "PERCENTAGE_OF_INPUT") 
    print "Created subset of Points for scenario " + counterStr 
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############################################################################################################################## 
#   Create the TIN and Linear Interpolation of the Rasters from the 75% sampling 
############################################################################################################################## 
 
    # Process: Create TIN 
    srElevPt75replace = srElevPt75.replace("\\","\\\\") 
    srTin75 = str(os.path.dirname(arcpy.Describe(srElevPt).path)) + "\\finalizedTins\\TIN_" + counterStr 
    #   This variable contains the field within the points used to create the TIN (could also be shape) 
    strTinParameters = srElevPt75replace + " SR_Elevation Mass_Points <None>" 
    arcpy.CreateTin_3d(srTin75, sr, strTinParameters, "CONSTRAINED_DELAUNAY") 
    print "Created TIN for scenario " + counterStr 
 
    # Process: TIN to Raster 
    srTin75_RAS = arcpy.Describe(srElevPt).path +"\\LINT_" + counterStr 
    arcpy.TinRaster_3d(srTin75, srTin75_RAS, "FLOAT", "LINEAR", "CELLSIZE 10", "1") 
    print "Created the Raster through linear interpolation from the TIN for scenario " + counterStr 
 
############################################################################################################################## 
#   Create the Raster through a geostatistical interpolation method - Kriging - from the 75% sampling 
############################################################################################################################## 
 
    # Process: Kriging 
    srKrg75_RAS = arcpy.Describe(srElevPt).path +"\\KRIG_" + counterStr 
    srKrgVar75_RAS = arcpy.Describe(srElevPt).path +"\\VAR_" + counterStr 
    krgLayer = "krgLayer" 
    ##   This variable contains the field within the points used to create the TIN (could also be shape) 
    strKrgParameter = srElevPt75replace + " X=Shape Y=Shape F1=SR_Elevation" 
    arcpy.GACreateGeostatisticalLayer_ga(inXml, strKrgParameter, krgLayer) 
    arcpy.GALayerToGrid_ga(krgLayer, srKrg75_RAS, "10", "1", "1") 
    ########################################################################### 
 
    print "Created the Raster through geostatistical interpolation from the points for scenario " + counterStr 
 
############################################################################################################################## 
#   Extract raster values from both linear and geostatistical interpolation to the 25% sampling of points 
############################################################################################################################## 
 
    # Process: Extract Multi Values to Points 
    inRasList = [[srTin75_RAS, "LINT"],[srKrg75_RAS,"KRIG"]] 
    arcpy.gp.ExtractMultiValuesToPoints_sa(srElevPt25, inRasList, "NONE") 
    print "Extracted values from the rasters for the 25% sampling of points for scenario " + counterStr 
 
############################################################################################################################## 
#   Add and calculate fields for the difference between the actual and the interpolated values along with scenario 
############################################################################################################################## 
 
    # Process: Add Field 
    arcpy.AddField_management(srElevPt25, "dLINT", "DOUBLE", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 
    arcpy.AddField_management(srElevPt25, "dKRIG", "DOUBLE", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 
    arcpy.AddField_management(srElevPt25, "dLINT_sqr", "DOUBLE", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 
    arcpy.AddField_management(srElevPt25, "dKRIG_sqr", "DOUBLE", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 
    arcpy.AddField_management(srElevPt25, "SCENARIO", "TEXT") 
    print "Added fields for the 25% sampling of points for scenario " + counterStr 
 
    # Process: Calculate Field 
    # RMSE = sqrt(sum((actual-estimated)^2)/count)" 
    arcpy.CalculateField_management(srElevPt25, "dLINT", "[SR_Elevation] - [LINT]", "VB", "") 
    arcpy.CalculateField_management(srElevPt25, "dKRIG", "[SR_Elevation] - [KRIG]", "VB", "") 
    arcpy.CalculateField_management(srElevPt25, "dLINT_sqr", "[dLINT]*[dLINT]") 
    arcpy.CalculateField_management(srElevPt25, "dKRIG_sqr", "[dKRIG]*[dKRIG]") 
    arcpy.CalculateField_management(srElevPt25, "SCENARIO", '"'+counterStr+'"', "VB", "") 
    print "Calculated fields for the 25% sampling of points for scenario " + counterStr 
 
    counter += 1 
    currentTime = time.time() 
 
    pct25List.append(srElevPt25) 
 
    print "Elapsed Time = " + str(round((currentTime - startTime),0)) + " seconds" 
 
    print "\n" 
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############################################################################################################################## 
#   Merge together all the points to perform a sumary statistic 
############################################################################################################################## 
 
mergedResults = arcpy.Describe(srElevPt).path +"\\mergedResults" 
arcpy.Merge_management(pct25List, mergedResults) 
print "Successfully merged all features into one feature class: " + mergedResults + "\n" 
 
#   If a null value exists for either the linear or geostatistical interpolation remove the record from the scenaroi 
with arcpy.da.UpdateCursor(mergedResults, ["dLint", "dKrig"], ) as cursor: 
    for row in cursor: 
        if not row[0] or not row[1]: 
            cursor.deleteRow() 
 
############################################################################################################################## 
#   Calculate Summary Statistics to conclude results 
############################################################################################################################## 
 
rmseScenario = arcpy.Describe(srElevPt).path +"\\RMSE_Scenario" 
rmseCombined = arcpy.Describe(srElevPt).path +"\\RMSE_Combined" 
arcpy.Statistics_analysis(mergedResults, rmseScenario,"dLINT_sqr SUM;dKRIG_sqr SUM;dLint MAX;dLint MIN;dKrig MAX;dKrig MIN","SCENARIO") 
arcpy.Statistics_analysis(mergedResults, rmseCombined,"dLINT_sqr SUM;dKRIG_sqr SUM;dLint MAX;dLint MIN;dKrig MAX;dKrig MIN", "#") 
 
rmseList = [rmseCombined, rmseScenario] 
for rmse in rmseList: 
    arcpy.AddField_management(rmse, "dLINT_RMSE", "DOUBLE", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 
    arcpy.AddField_management(rmse, "dKRIG_RMSE", "DOUBLE", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 
    arcpy.AddField_management(rmse, "RMSE", "TEXT") 
    arcpy.CalculateField_management(rmse, "dLINT_RMSE", "Sqr([SUM_dLINT_sqr]/[FREQUENCY])", "VB", "") 
    arcpy.CalculateField_management(rmse, "dKRIG_RMSE", "Sqr([SUM_dKRIG_sqr]/[FREQUENCY])", "VB", "") 
    print "Successfully complete the RMSE calculations for " + rmse 
 
    with arcpy.da.UpdateCursor(rmse, ["dLINT_RMSE", "dKRIG_RMSE", "RMSE"]) as cursor: 
        for row in cursor: 
            if row[0] > row[1]: 
                row[2] = "KRIG" 
            elif row[0] < row[1]: 
                row[2] = "LINT" 
            cursor.updateRow(row) 
 
rmseScenarioResults = arcpy.Describe(srElevPt).path +"\\RMSE_Scenario_Results" 
rmseCombinedResults = arcpy.Describe(srElevPt).path +"\\RMSE_Combined_Results" 
arcpy.Frequency_analysis(rmseScenario, rmseScenarioResults,"RMSE","#") 
arcpy.Frequency_analysis(rmseCombined, rmseCombinedResults,"RMSE","#") 
 
print "Completed the RMSE evaluation" 
 
print “Successfully Completed the code 
” 
currentTime = time.time() 
print "Elapsed Time = " + str(round((currentTime - startTime),0)) + " seconds" 
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