Hydraulic Analysis Comparing Efficiency of One and Two-Zone Pressure Water Systems

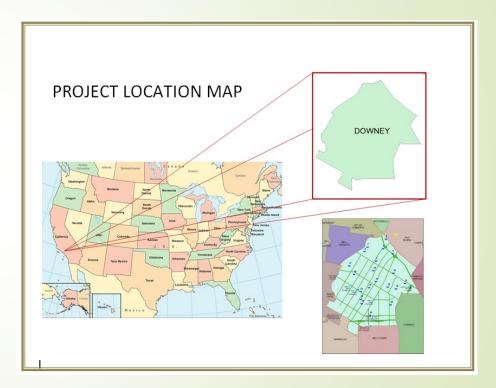
Agenda:

- Background
- Objectives
- Water Distribution System Overview
- GIS and Hydraulic Modeling Relationship
- Hydraulic Modeling Concepts
- Project Approach and Methodology
- Project Timeline
- References

Ahmed Husain

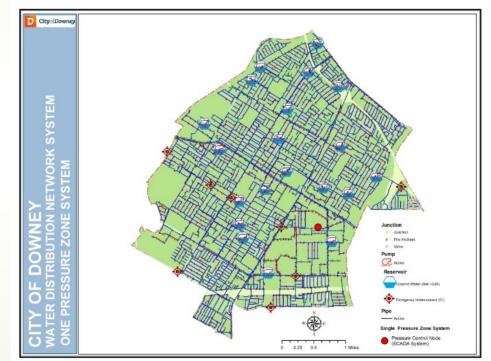
GEOG 596A MGIS Program Penn State University May 12, 2015

Advisor - Dr. Patrick J. Kennelly



Pressures

Background


- Overview of City of Downey
 - Location 12 Miles SE of Downtown Los Angeles
 - Area 12.8 Sq. Miles
 - Population 113,000
 - Topography, Elevations 140 ft. to 85 ft.
 - Primary Drinking Water Purveyor
 - Five Emergency Connection with Other Water Agencies

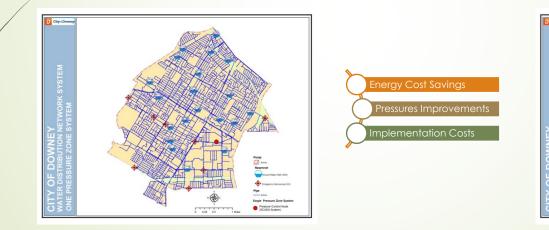
onlineatlas.us(n.d.)

Background

- Overview of Downey's Water Distribution Network
 - No of Customers 23,500
 - No. of Active Groundwater Wells 20
 - Average Daily Demand 10.2 MGD
 - Total Pipe Length in Mile 260 miles
 - No. of Valves 3800
 - No. of Fire Hydrants 1,450
 - Elevation Difference Between
 North (140 ft.) and South (85 ft.)
 Boundaries 55 ft.
 - System Pressure Varies From North (48 psi) to South (98 psi)
 - Water System Pressure Controlled by SCADA at Single Location for 65 psi.

Background

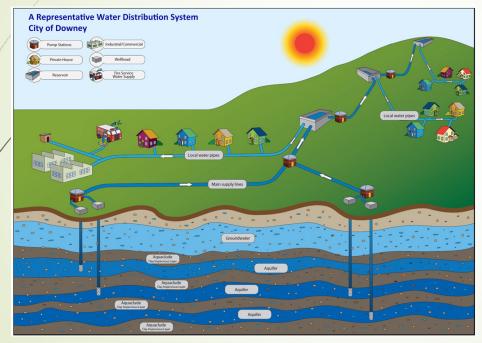
Problem


- High Costs of Pumping Energy Rates. Annual Energy Cost for Operating 20 Wells is about \$1.4 Million
- There is about 50 psi difference between North and South portion of the City
- Existing Water Network System consists of Single Pressure Zone
- Pumps Run more Frequently to keep the Required Pressure of 65 psi at the Water Yard Location.

Objectives

5

- The factors that could help in maximizing the efficiency of the system
 - Energy Cost Savings
 - Water Distribution Network Pressures Improvement
 - Implementation Payback Analysis



Existing Condition

Project Goal

Water Distribution System Concept (GIS and Hydraulic Model)

Major Components of the City of Downey's Water Distribution System

A Typical Groundwater Well System (Waterwise)

Hydraulic Model Representation

- Groundwater Wells
- Pumps
- Pipes
- Nodes
- Deep Aquifer Layers

Water Meter Consumption Nodes

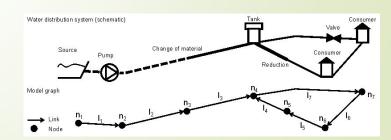
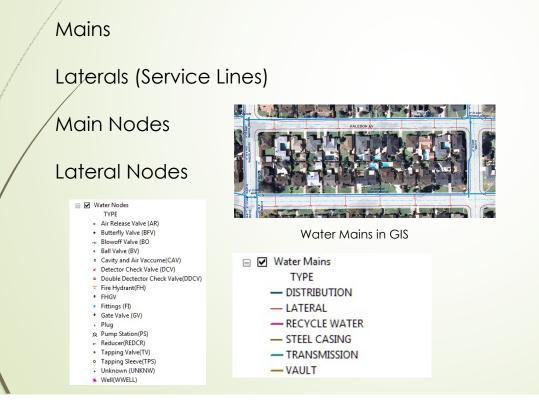
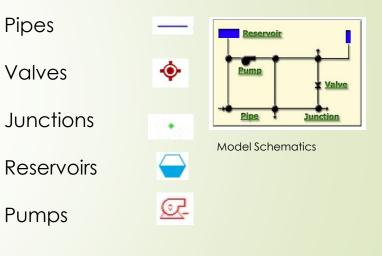
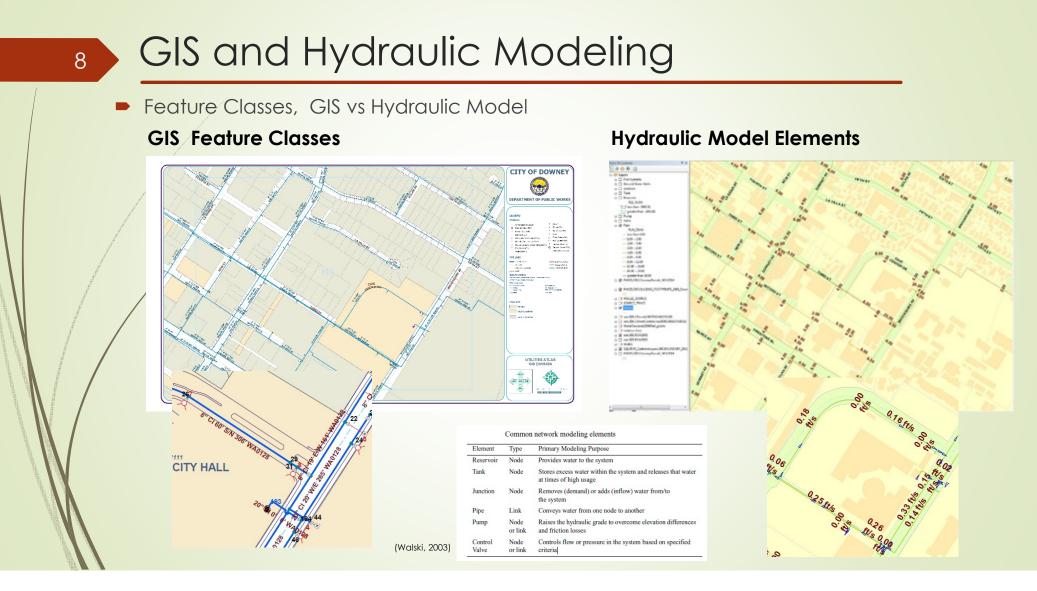


Illustration of a water distribution system and the corresponding model graph(Klingel, 2010)


GIS and Hydraulic Modeling


Feature Classes, GIS vs Hydraulic Model

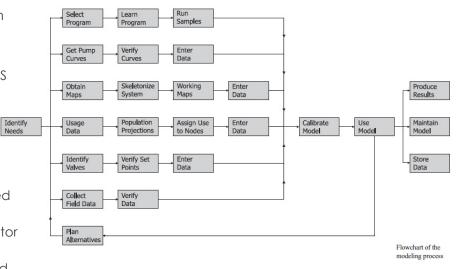

GIS Feature Classes

7

Hydraulic Model Elements

GIS and Hydraulic Modeling

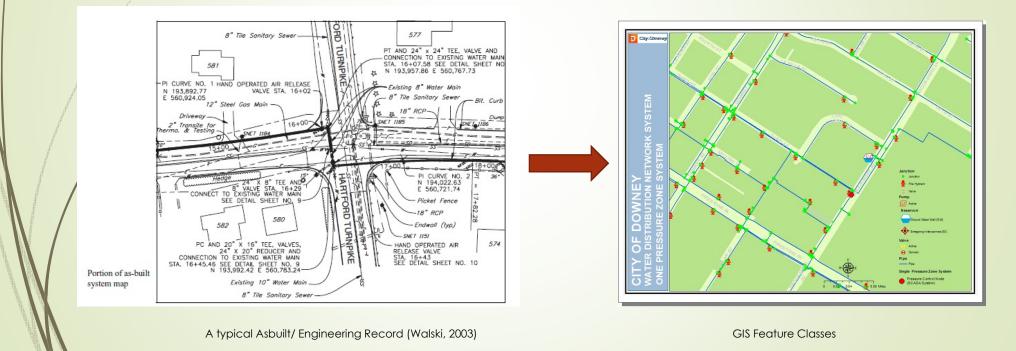
Feature Class Attributes, GIS vs Hydraulic Model


- Model (Pipes, Nodes), Pipe Material, Elevations, Demand Consumption, Water Depth, Pump Parameters and Other Attributes.
- GIS (Lines, Points), Offset Distance, Size, Ownership, Source linkages, etc.

GIS	HYDRAULIC MODEL	GIS	HYDRAULIC MODEL				
	PIPES	NODES					
PIPE ID	FEATUREID	NODE ID	FEATURE ID				
DIAMETER	DIAMETER (in)	ATLAS SHEET					
MATERIAL	MATRIAL	SEQUENCE					
ASBUILT_SOURCE_CODE		WELL_NUMBER					
OWNERSHIP		OWNERSHIP					
MAIN_TYPE		CONSTRUCTION_DATE					
MAIN_STATUS		UPDATE_DATE					
CONSTRUCTION_DATE	INSTALL_DATE	METER_NUMBER	INSTALL_DATE				
UPDATES_DATE		SERVICE_ACCOUNT_NO					
OFFSET_DISTANCE		SERVICE_AREA					
OFFSET_FROM		NODE_TYPE					
OFFSET_DIRECTION		NODE_SIZE	DIAMTER				
CATEGORY		STATUS	STATUS				
METAL_TRACKING		MATERIAL	MATRIAL				
SCAN1_LINK		NODE_CATEGORY					
SCAN2_LINK		METER_SIZE					
SCAN3_LINK		LOCATION_ADDRESS					
COMMENTS		SITE_DESCRIPTION					
	PIPE_LENGTH(ft)		ZONE				
	MATERIAL_ROUGHNESS		ELEVATION (ft)				
	CHECK_VALVE		FIRE_FLOW_JUNCTION				
	ZONE		FIRE_FLOW_LANDUSE				
			FIRE FLOW DEMAND				
	PIPE LINING		DEMAND (gpm)				
	PIPE_JUMP		DEMAND PATTERN				
			OUTPUTS				
	OUTPUTS						
			DEMAND				
	FLOW(gpm)		HEAD (ft)				
	FLOW_DIRECTION		PRESSURE (psi)				
	VELOCITY (ft/s)		WATER AGE (hrs)				
	HEADLOSS (ft)		ELEVATION (ft)				
	STATUS(open/close)						

- Mathematical Models 1) Mass Conservation 2) Energy Equations
- Methodology for Building a Hydraulic Model from GIS Data
 - Step 1: Extract and COGO Water Infrastructure Data from CAD Asbuilts
 - Step 2: Review GIS Data

10

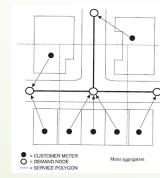

- Step 3: Integrate and Develop Network Topology from GIS Features Classes (Skelotonization)
- Step 4: Collect Meter Data (Water Demands / Node Consumption)
- Step 5: Input/Import Facilities
- Step 6: Determine Node Elevations
- Step 7: Assign Pipe Roughness / Material Coefficients Based on Pipe Material
- Step 8: Allocate Node Demands /Demand Projection Factor Based on Land Use Zoning Criteria
- Step 9: Integrate Pump Control Curves, Diurnal Curve, and Pump Sequencing Logics, Reservoirs / Wells Configuration (Ground Levels etc.)
- Step 10: Import Fire Flow Demands
- Step 11: Build Hydraulic Model
- Step 12: Calibrate Model with Fire Hydrant Flow Tests

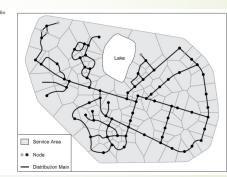


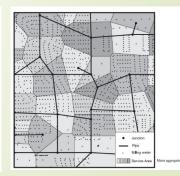
(Walski, 2003)

- Summarization of Major Steps Involved in Building a Hydraulic Model using GIS Data
 - Extract, COGO, and Build GIS Feature Class From CAD and As-Built Paper Maps

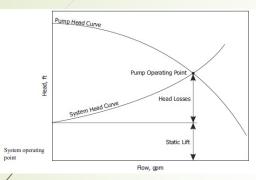



- Node Elevations and Water Meter Consumption Data Association and Aggregation
 - Elevation Extraction from a Digital Elevation Model (DEM) Model



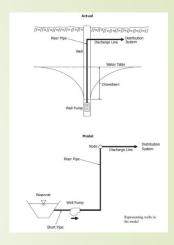

Allocate Water Consumption Demands

13

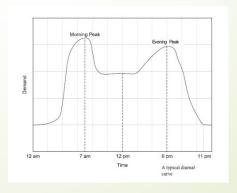


(Walski, 2003)

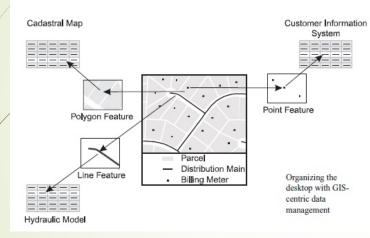
Pump Data And Operating Curves


14

Well Water Levels


Groundwater Well

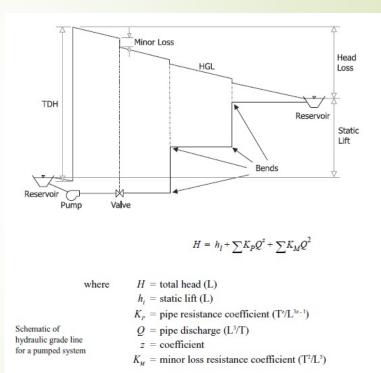
Representation (Walski, 2003)


• Water Consumption Diurnal Curves

GIS and Hydraulic Model Integration

15

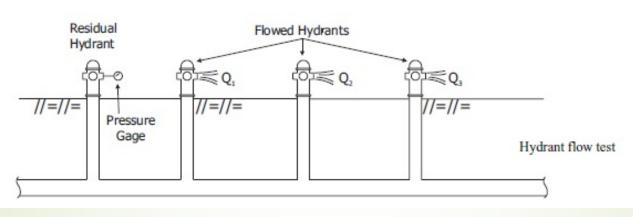
Hazen-Williams


 $K_P = \frac{C_f L}{C^2 D^{4.87}}$

where $K_p = \text{pipe resistance coefficient } (s^{t}/\text{ft}^{3t-1}, s^{t}/\text{m}^{3t-1})$

- L =length of pipe (ft, m)
 - C = C-factor with velocity adjustment

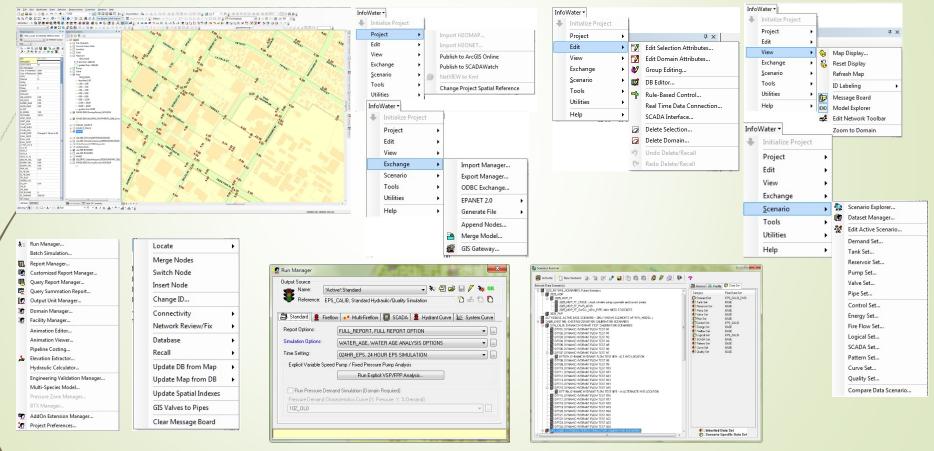
z = 1.852


- D = pipe diameter (ft, m)
- C_{f} = unit conversion factor (4.73 English, 10.7 SI)

(Walski,2003)

Hydraulic Model Calibration

16



(Walski,2003)

Hydraulic Modeling Software

17

 InfoWater Software from Innovyze Company (Create, Edit, Run, Analyze, Design, and Optimize the Water Distribution Network)

Hydraulic Modeling Capabilities

Steady State / Extended Period Simulation

- Water Quality Evaluation (Chemicals / Water Age / Trace)
- Fire Flow Analysis (Residual Pressure / Available)
- Master Planning
- Energy Management
- Development Assessment (Helps in System Reliability ,Modeling Wells and Pumps Analysis)
- System Operational Studies

Project Approach and Methodology

- What will it take to accomplish this?
 - Use City's Existing One Pressure Zone System
 - Dividing the Pipe Network into Two Zones

19

Use existing City of Downey's water distribution system hydraulic model, one pressure zone

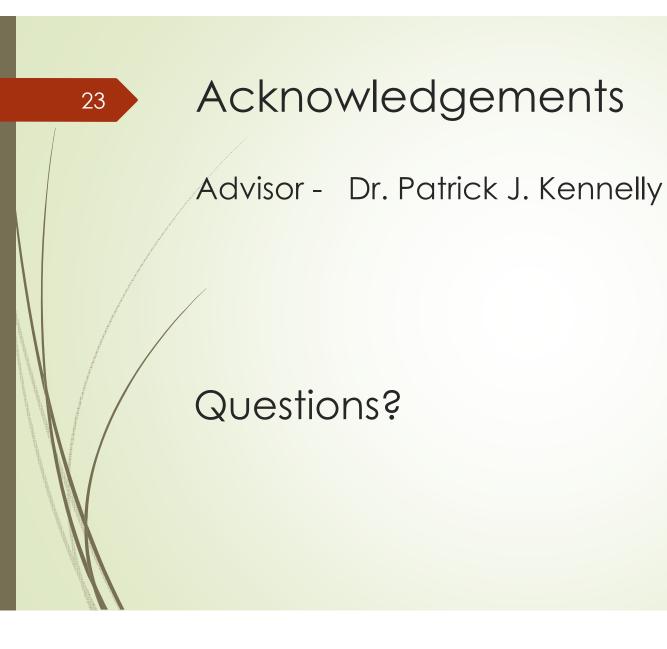
Divide and create

two zone system,

Configure and prepare hydraulic model for simulation studies. Run and analyze model for two pressure zone system Present findings of one and two pressure zone simulated hydraulic model systems with observed values about zone pressures differences and Energy efficiencies

- Collect Pump Meter Billing Data
- Update Node Demands to Current Usage
- Create Two Zones in the System
- Assign Pressure Control Points
- Add / Remove Valves and Other Appurtenances
- Add Pumping Sequence
- Balance Flow / Recodify Boundary for Zone
- Run Model to Assess Pump Flow Times
- Evaluate One Zone and Two Zone Pump Flows / Duration to Evaluate Energy Use in Comparing map patterns of pressure
- Generate Comparison Excel Document
- Generate Map of Two Zone Distribution System

Anticipated Results


- Water Distribution Network Local Pressures will Improve
- Two Pressure Zone System will optimize the Distribution System and doing so It will help in Saving Energy Costs
- Implementation Costs are Estimated to be Recovered in 3 4 Years

Project Timeline

	#	TASK	MAY 2015		JUNE 2015			JULY 2015				
			WEEK 3	WEEK 4	WEEK 1	WEEK 2	WEEK 3	WEEK 4	WEEK 1	WEEK 2	WEEK 3	JULY 22
_	1	Collect water consumption data from billing meter read										
_												
_	2	Collect pump energy use data										
_												
_	3	Create two pressure zone model from existing model										
1_												
_	4	Update model with current consumption data										
_												
_	5	Create pump sequencing logic										
_												
_	6	Update model with pumping electrical usage data										
-												
1-	7	Test and trials of balancing flow in two pressure zone										
-												
-	8	Run hydraulic model and extract results										
-												
-	9	Presentation at ESRI UC San Diego										

References

- A GIS-based Water Distribution Model for Salt Lake City, UT. (n.d.). Retrieved April 5, 2015, from http://proceedings.esri.com/library/userconf/proc01/professional/papers/pap173/p173.htm
- Armstrong, L. (2012). Hydraulic modeling and GIS. Redlands, Calif.: Esri Press.
- Boulos, P., & Lansey, K. (2006). Comprehensive water distribution systems analysis handbook for engineers and planners (2nd ed.). Pasadena, Calif.: MWH Soft.
- Chapter 15. (n.d.). Retrieved April 5, 2015, from http://www.intechopen.com/books/application-of-geographicinformation-systems/demand-allocation-in-water-distribution-network-modelling-a-gis-based-approach-usingvoronoi-diagram
- Hydraulic Modeling Improves Water System Reliability, Efficiency. (n.d.). Retrieved April 4, 2015, from http://www.waterworld.com/articles/wum/articles/print/volume-2/issue-1/features/hydraulic-modeling-improveswater-system-reliability-efficiency.html
- (n.d.). Retrieved April 5, 2015, from http://resources.ccc.govt.nz/images/AllCommsImages/2012/HowChchWaterSupplyWorks.jpg
- Map Of United States. (n.d.). Retrieved April 5, 2015, from http://www.onlineatlas.us/united-states-map.htm
- Problems in Water Supply Distribution System. (2010, March 23). Retrieved April 5, 2015, from http://www.thewatertreatments.com/water/problems-water-supply-distribution-system/
- Real-time network hydraulic integrity monitoring software. (n.d.). Retrieved April 5, 2015, from http://www.innovyze.com/products/pressurewatch/
- Walski, T., & Chase, D. (2001). Water distribution modeling. Waterbury, CT, U.S.A.: Haestad Press.
- Walski, T., & Methods, I. (2003). Advanced water distribution modeling and management. Waterbury, CT: Haestead Press.
- Waterwise. (n.d.). Retrieved April 5, 2015, from http://www.ccc.govt.nz/homeliving/watersupply/ourwater/waterwise/index.aspx

