
# Hydraulic Analysis Comparing Efficiency of One and Two-Zone Pressure Water Systems

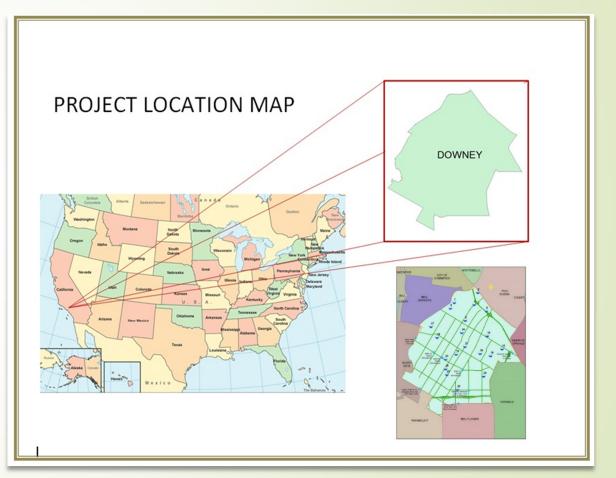
Ahmed Husain, PE MGIS Program Penn State University July 22, 2015

Advisor – Professor Patrick J. Kennelly





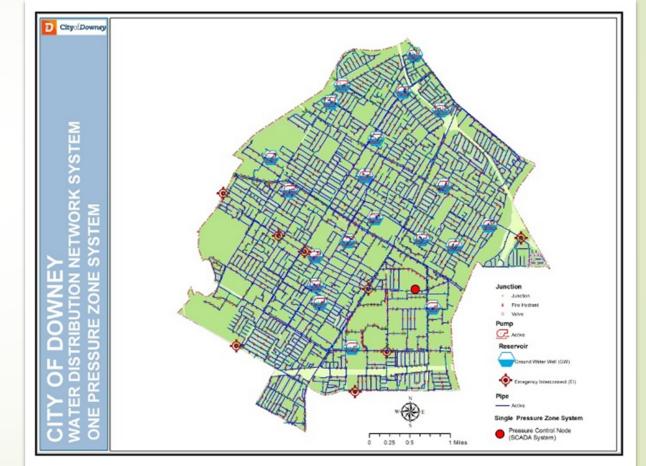



### Agenda

- Background (Geography, Topography, Water Distribution System, Problem Description)
- Project objectives
- Project approach methodology, existing model updates and a comparative analysis
- References
- Questions

### Background

3


- Overview of City of Downey
  - Location 12 miles south east of downtown Los Angeles
  - Area 12.8 Sq. miles
  - Population 113,000
  - Topography, elevations range from 140 ft. to 85 ft. above sea level gives a total relief of 55 ft.
  - Primary drinking water purveyor
  - Five emergency connection with other water agencies



onlineatlas.us(n.d.)

### Background

- Overview of Downey's water distribution network
  - Groundwater sources
  - Central basin aquifer
  - Service connections 21,500
  - No. of active groundwater wells 20
  - Average daily demand 10.2 MGD
  - Total pipe length in miles 260
  - No. of valves 3,800
  - No. of fire hydrants 1,850
  - System pressure varies from north (48 psi) to south (98 psi)
  - Water system well operations are managed by SCADA



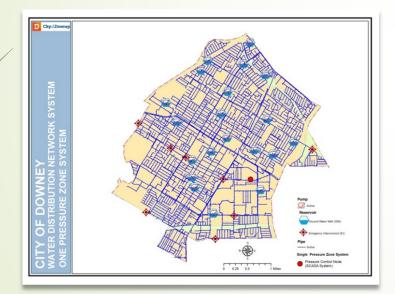
### Background

Problem description

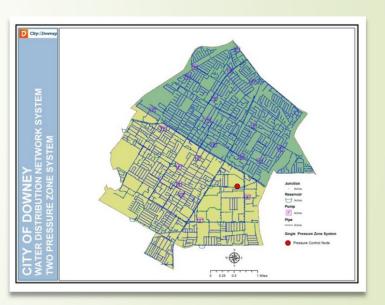
- High costs of pumping energy rates. Annual energy cost for operating 20 wells is about \$1.4 million
- There is about 50 psi difference between north and south portion of the City
- Existing system is configured as 1 Zone system and the wells are controlled from a single monitoring node
- Well pumps run more frequent to stabilize the system pressure



### Next Topic


- Background (Geography, Topography, Problem Description)
- **Project Objectives**
- Project Approach Methodology and Analysis
- References
- Questions

\_


# Project Objectives

7

This project will quantify the improvements in terms of energy conservation and pressure variability by moving to a two zone system, and to determine the payback period.





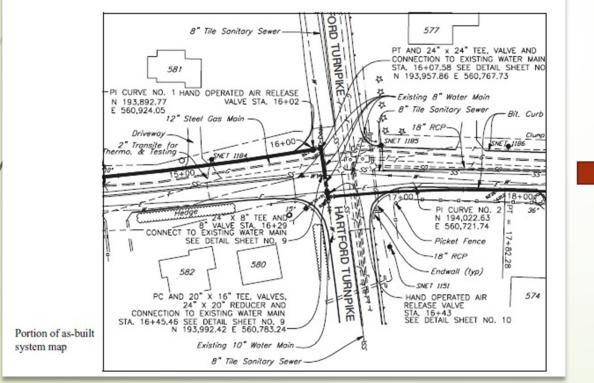


**Existing** Condition

Project Goal

### Next Topic

- Background (Geography, Topography, Problem Description)
- Project Objectives
- Project Approach Methodology and Analysis
- References
- Questions


### Project Approach Methodology and Analysis

CityofD

- Existing City's hydraulic model
  - Last updated with consumption data in 2009
  - GIS Layers, engineering record drawings and as-builts
  - InfoWater Software

9

Hydraulic Model Simulation



A typical Asbuilt/ Engineering Record (Walski, 2003)



**GIS Feature Classes** 

### Data Collection

Water meter consumption data for 2014 for each household

- Billing data stored with 100 CF units
- Gallons Per Minute(GPM) conversion
- Total number of meter nodes 21,789
- Assessor Parcel Number, relate with parcels GIS layer
- Demand node allocation
- Sample records from finance billing system

| tercon | sumpt | tion_20 | 14    |       |               |               |               |            |            |            |          |      |          |       |         |       |           |
|--------|-------|---------|-------|-------|---------------|---------------|---------------|------------|------------|------------|----------|------|----------|-------|---------|-------|-----------|
| OBJECT | ID *  | ID      | Strno | Fract | Street        | Type_         | Unit          | ZIP        | Meter_No   | Read_Date  | Land_Use | Cons | acct1    | acct2 | metsize | units | waterusag |
|        | 1     | 698340  | 107   | 111   | STONEWOOD MAL | <null></null> | 125           | 90241-3905 | 0001323988 | 3/10/2014  | Commer   | 808  | 2405-464 | 002   | 2       | 19    | 77.       |
|        | 3     | 698340  | 107   | 111   | STONEWOOD MAL | <null></null> | 125           | 90241-3905 | 0001323988 | 6/30/2014  | Commer   | 473  | 2405-464 | 002   | 2       | 19    | 77.       |
|        | 4     | 698340  | 107   | 111   | STONEWOOD MAL | <null></null> | 125           | 90241-3905 | 0001323988 | 8/26/2014  | Commer   | 476  | 2405-464 | 002   | 2       | 19    | 80.       |
|        | 7     | 698341  | 113   | 121   | STONEWOOD MAL | <null></null> | <null></null> | 90241-3905 | 0001323920 | 3/10/2014  | Commer   | 1096 | 2405-463 | 003   | 2       | 3     | 77.       |
|        | 10    | 698341  | 113   | 121   | STONEWOOD MAL | <null></null> | <null></null> | 90241-3905 | 0001323920 | 8/26/2014  | Commer   | 918  | 2405-463 | 003   | 2       | 3     | 80.       |
|        | 11    | 698341  | 113   | 121   | STONEWOOD MAL | <null></null> | <null></null> | 90241-3905 | 0001323920 | 10/20/2014 | Commer   | 828  | 2405-463 | 003   | 2       | 3     | 1895.     |
|        | 13    | 698341  | 102   | 148   | STONEWOOD MAL | <null></null> | EVEN          | 90241-3905 | 0001323923 | 3/10/2014  | Commer   | 910  | 2405-466 | 002   | 2       | 10    | 77.       |
|        | 14    | 698341  | 102   | 148   | STONEWOOD MAL | <null></null> | EVEN          | 90241-3905 | 0001323923 | 5/5/2014   | Commer   | 781  | 2405-466 | 002   | 2       | 10    | 77.       |
|        | 15    | 698341  | 102   | 148   | STONEWOOD MAL | <null></null> | EVEN          | 90241-3905 | 0001323923 | 6/30/2014  | Commer   | 869  | 2405-466 | 002   | 2       | 10    | 1933.     |
|        | 17    | 698342  | 102   | 148   | STONEWOOD MAL | <null></null> | EVEN          | 90241-3905 | 0001323923 | 10/20/2014 | Commer   | 747  | 2405-466 | 002   | 2       | 10    | 80.       |
|        | 18    | 698342  | 102   | 148   | STONEWOOD MAL | <null></null> | EVEN          | 90241-3905 | 0001323923 | 12/23/2014 | Commer   | 844  | 2405-466 | 002   | 2       | 10    | 1932.     |
|        | 21    | 698342  | 206   | 272   | STONEWOOD MAL | <null></null> | EVEN          | 90241-3905 | 0001324114 | 6/30/2014  | Commer   | 10   | 2405-499 | 002   | 2       | 4     | 77.       |
|        | 22    | 698342  | 206   | 272   | STONEWOOD MAL | <null></null> | EVEN          | 90241-3905 | 0001324114 | 8/26/2014  | Commer   | 11   | 2405-499 | 002   | 2       | 4     | 80.       |
|        | 23    | 698342  | 206   | 272   | STONEWOOD MAL | <null></null> | EVEN          | 90241-3905 | 0001324114 | 10/20/2014 | Commer   | 11   | 2405-499 | 002   | 2       | 4     | 21.       |
|        | 25    | 698342  | 274   | 292   | STONEWOOD MAL | <null></null> | EVEN          | 90241-3905 | 0001323922 | 3/10/2014  | Commer   | 93   | 2405-497 | 002   | 2       | 15    | 190.      |
|        |       |         |       |       | III           |               |               |            |            |            |          |      |          |       |         |       |           |

### Data Collection

- Well pumps field test
  - Southern California Edison (Electrical purveyor)
  - Frequency of tests
  - Updates to Model

|      |                       |         | Lates    | st Pump T | est   |           |
|------|-----------------------|---------|----------|-----------|-------|-----------|
| WELL | Location              | Pump hp | Well Cap | @ PSI     | kW    | Elevation |
| 4    | 8040 Allen Grove      | 350     | 2881     | 59.2      | 224   | 139       |
| 11   | 11051 Brookshire      | 450     | 3028     | 68        | 374   | 120       |
| 16   | 9156 Cecilia Ave      | 200     | 1573     | 60.7      | 115   | 119       |
| 17   | 7237 E. Pellett       | 75      | 669      | 71.8      | 52    | 116       |
| 30   | 9131 Imperial Hwy     | 125     | 850      | 78.5      | 66    | 96        |
| 8    | 7442 Lubec Ave        | 100     | 1106     | 53.5      | 86    | 134       |
| 14   | 10505 La Reina Ave    | 100     | 811      | 69.3      | 63    | 125       |
| 24   | 9643 Washburn Ave     | 100     | 314      | 71.8      | 33.9  | 106       |
| 23   | 8201 Stewart and Gray | 100     | 776      | 71.4      | 65    | 113       |
| 10   | 10001 Haldon Ave      | 150     | 1194     | 71        | 99.2  | 129       |
| 18   | 7538 Burns Ave        | 150     | 1382     | 71.9      | 116.4 | 115       |
| 2    | 7932 Telegraph Rd     | 100     | 536      | 55.1      | 46.8  | 147       |
| 25   | 12120 Downey Ave      | 150     | 1249     | 72.5      | 98    | 108       |
| 9    | 9856 Paramount Blvd   | 100     | 811      | 69        | 68    | 130       |
| 29   | 12240 1/2 Planett     | 125     | 1367     | 57        | 96    | 106       |
| 12   | 10228 Lesterford      | 175     | 1714     | 74        | 137   | 126       |
| 15   | 10636 Casanes Ave     | 125     | 1095     | 74        | 91.5  | 118       |
| 5    | 9034 Stoakes ave      | 75      | 635      | 60        | 49    | 143       |
| 19   | 11523 Dolan Ave       | 100     | 903      | 72        | 68.5  | 114       |
| 7    | 7440 Suva Ave         | 100     | 787      | 70.7      | 70    | 133       |
| Yard | 9252 Stewart and Gray |         |          |           |       | 107       |
|      | Century & Lakewood    |         |          |           |       | 88        |

### **Zone Boundary Conditions**

Two boundary conditions

12

- Optimal pipe segments
- Straight line division (First trial)
- Final 2 zones boundaries
  - Total pipe segments for closure



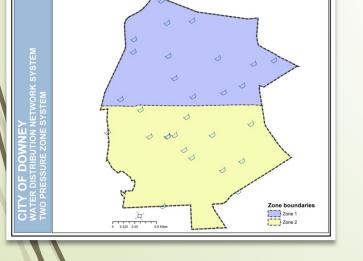
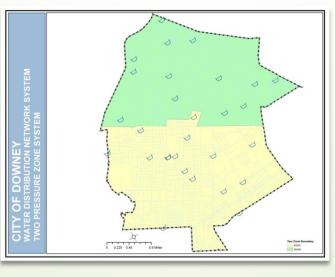




Figure (a) Dual zones boundary well flows not balancing



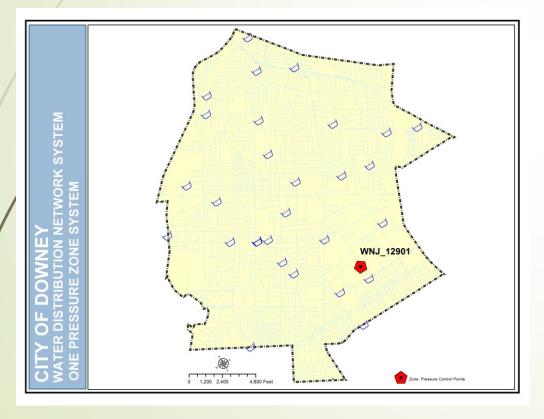
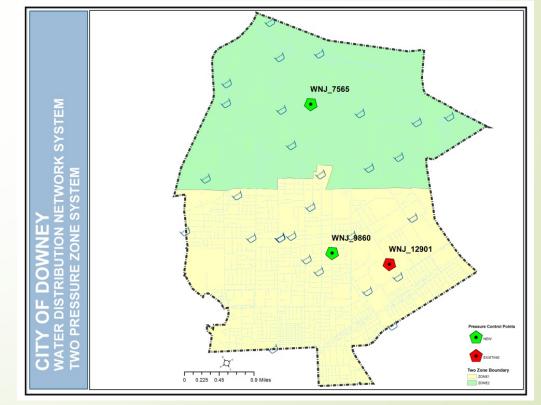

| VALVE DIAMETER SIZE                   | NO OF PIPES TO BE CLOSED | MATERIAL |
|---------------------------------------|--------------------------|----------|
| 4"                                    | 5                        | CI       |
| 6"                                    | 12                       | CI       |
| 8"                                    | 8                        | AC       |
| 10"                                   | 1                        | CI       |
| 12"                                   | 2                        | CI       |
| 20"                                   | 2                        | CI       |
| 24"                                   | 2                        | CI       |
| Total Number of Pipes to be<br>Closed | 32                       |          |

Figure (b) Dual zones boundary well flows balancing

Number of pipe segments closed


### **Pressure Control Nodes Location Selection**

- 13
- 1 Zone analysis
  - Pressure control node 12901
  - Control node location



1 Zone

- 2 zones analysis
  - North Zone
    - Pressure control node 7565
  - South Zone
    - Pressure control node 9860



2 Zones

# Well Pumps Operations Sequencing Order

Wells start/stop sequence order list

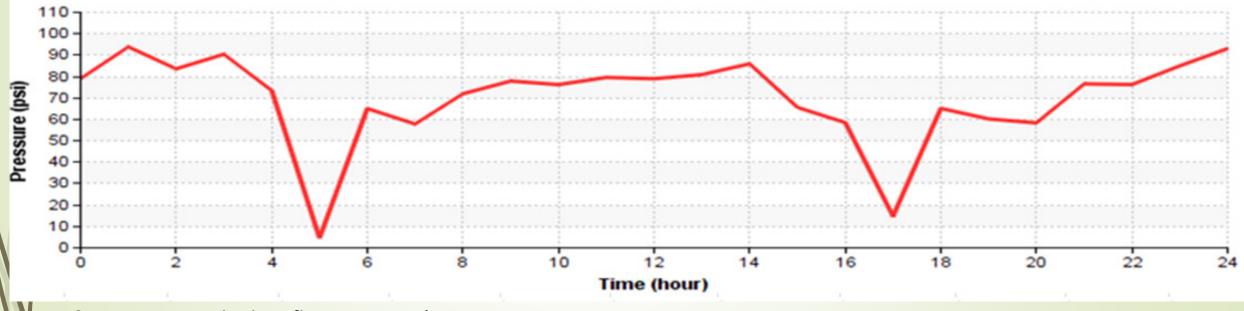
14

- Existing 1 zone system sequence order
- 2 zones sequence order updates to hydraulic model

| 1 ZONE WELL PUMPS SEQUENCING |            |  |  |  |  |  |
|------------------------------|------------|--|--|--|--|--|
| Well #                       | SEQUENCE   |  |  |  |  |  |
| 16                           | 1          |  |  |  |  |  |
| 17                           | 2          |  |  |  |  |  |
| 30                           | 3          |  |  |  |  |  |
| 08                           | 4          |  |  |  |  |  |
| 14                           | 5          |  |  |  |  |  |
| 24                           | 6          |  |  |  |  |  |
| 23                           | 7          |  |  |  |  |  |
| 10                           | 8          |  |  |  |  |  |
| 18                           | 9          |  |  |  |  |  |
| 02                           | 10         |  |  |  |  |  |
| 25                           | 11         |  |  |  |  |  |
| 09                           | 12         |  |  |  |  |  |
| 29                           | 13         |  |  |  |  |  |
| 12                           | 14         |  |  |  |  |  |
| 15                           | 15         |  |  |  |  |  |
| 05                           | 16         |  |  |  |  |  |
| 19                           | 17         |  |  |  |  |  |
| 07                           | 18         |  |  |  |  |  |
| 04                           | 24 Hr.     |  |  |  |  |  |
| 11                           | 24 Hr./VFD |  |  |  |  |  |

1 Zone

|        | 2 ZONES WELL                                                | PUMP | S SEQUE | ENCING         |
|--------|-------------------------------------------------------------|------|---------|----------------|
|        | ZONE 1                                                      |      |         | ZONE2          |
| Well # | Well Pump                                                   |      | Well #  | Well Pump      |
| vven#  | Sequecning                                                  |      | vven#   | Sequecning     |
| 04     | 04 Always Running<br>16 Always Running<br>14 Always Running |      | 11      | Always Running |
| 16     |                                                             |      | 30      | Always Running |
| 14     |                                                             |      | 24      | Always Running |
| 08     | Always Running                                              |      | 18      | Comes on next  |
| 10     | Always Running                                              |      | 25      | After 18       |
| 02     | Comes on next                                               |      | 23      | After 25       |
| 17     | After 02                                                    |      | 19      | After 23       |
| 09     | After 17                                                    |      | 29      | After 19       |
| 12     | After 09                                                    |      |         |                |
| 15     | After 12                                                    |      |         |                |
| 05     | After 15                                                    |      |         |                |
| 07     | After 05                                                    |      |         |                |


2 Zones

### 1 Zone System Pressures (psi) at Control Node 12901

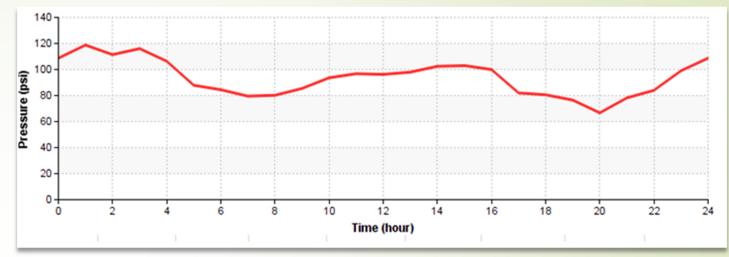
- System pressure analysis using EPS for a 24 Hours period
- Summer peak day flow scenario

15

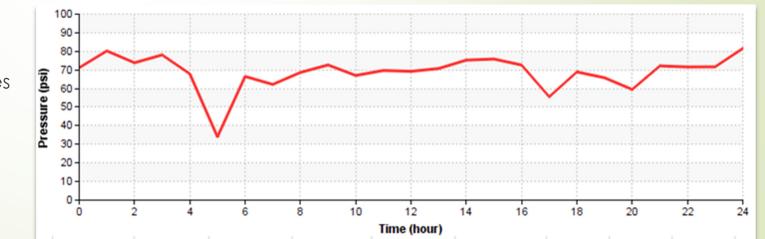
Valleys depict the lowest pressure (High Demands)



17one


Summer peak day flow scenario was used to perceive the highest demand flow in the system to visualize the pressures

# 2 Zones (North and South) System Pressures (psi)


16

#### North zone

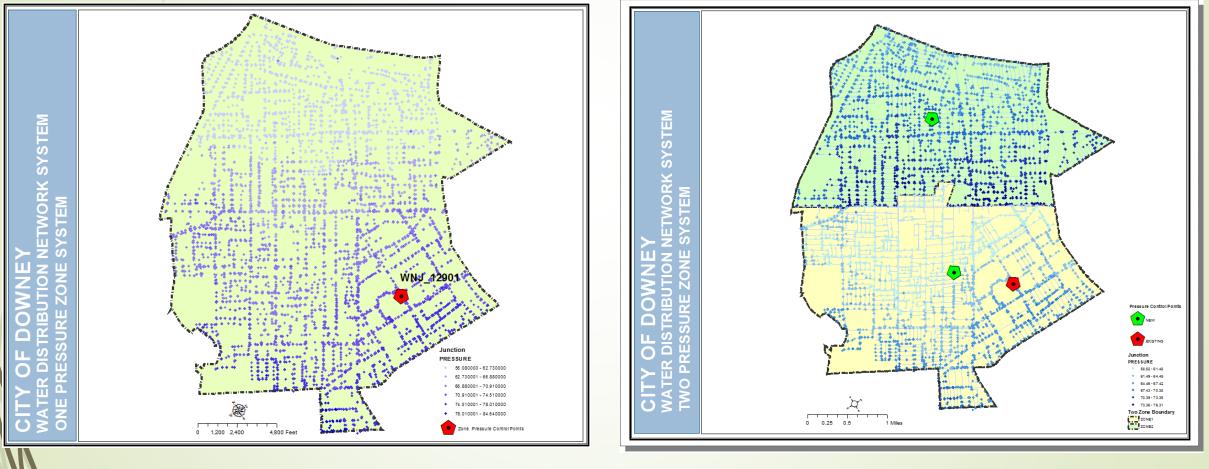
- System pressures stabilized
- No valleys with low pressures



### North Zone Control Node 7565



### South Zone Control Node 9860

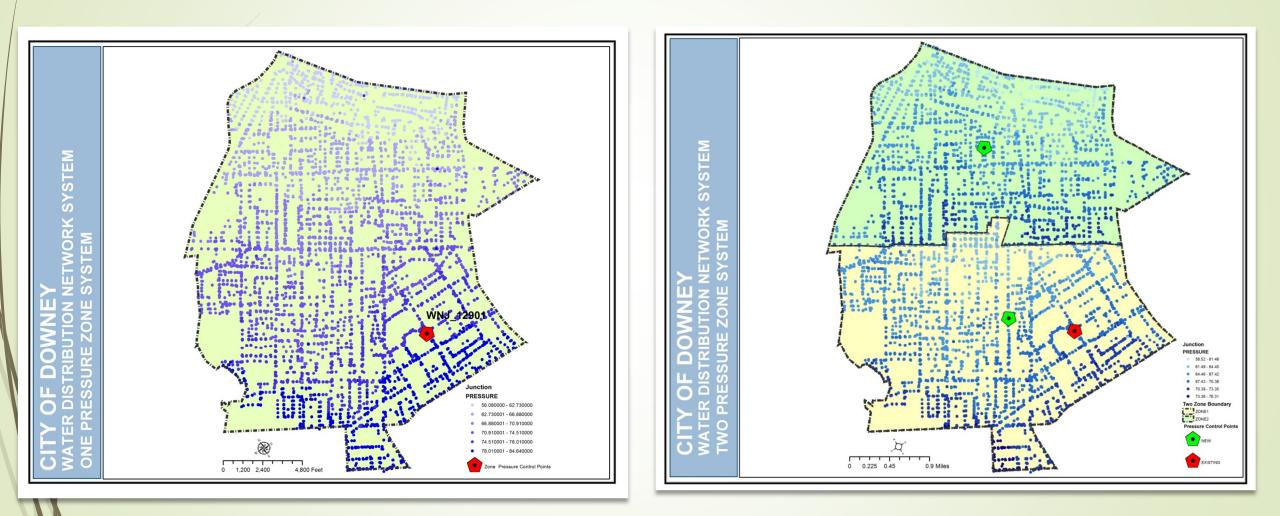

### South zone

- System pressures stabilized
- One valleys with improved pressures

### 1 Zone and 2 Zones Pressure Variations

- 1 zone pressures range from 56 psi to 85 psi
- 2 Zones pressures pattern much improved

17




1 Zone

6:00 AM Time Stamp

### 2 Zones

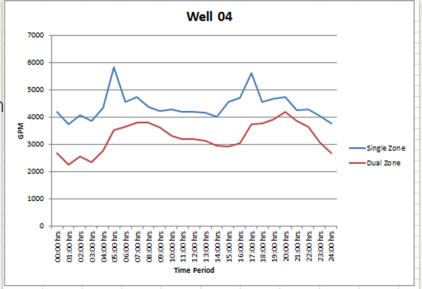
### 1 Zone and 2 Zones Pressure Variations

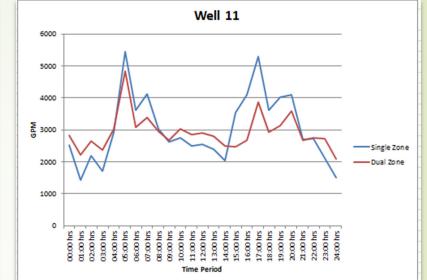


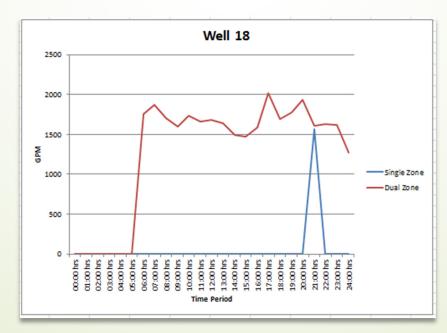
1 Zone

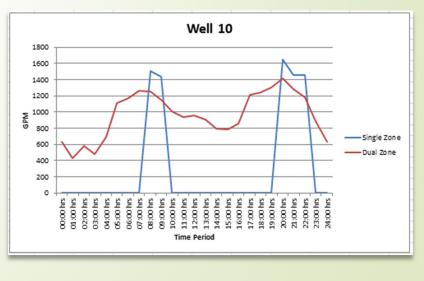
18

18:00 Time Stamp


### 2 Zones


### **One and Two Zones Flow Comparison**


19


#### Larger Pumps (500 hp &450 hp)

- High flows in (blue) 1 zone system
- Lower flows (red) in 2 zones system
- Smaller Pumps (100 hp & 160 hp)
  - Intermittent flows in 1 zone system
  - Better support in 2 zones system









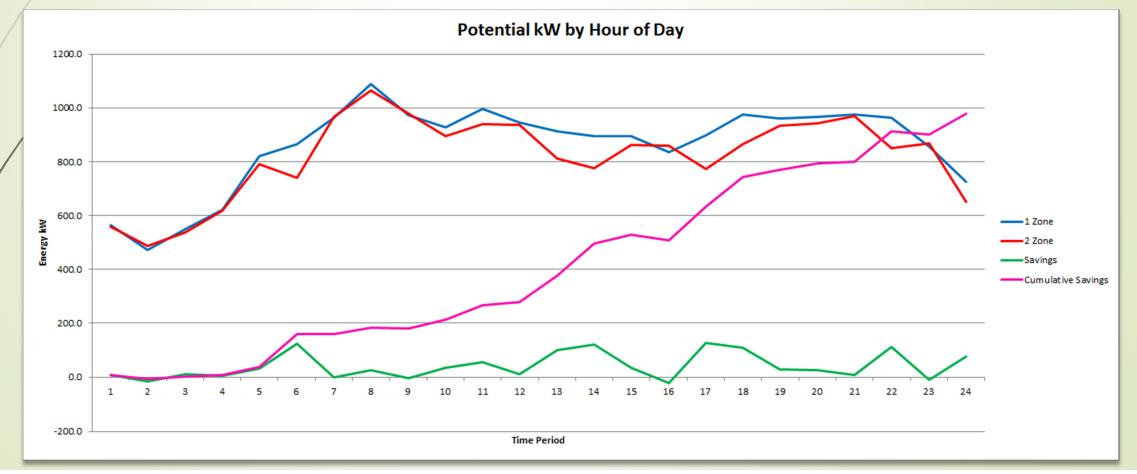
### Pump Energy Consumption Calculations

Pump motor affinity law

20

Power is proportional to cube of water flow

- P1 = Edison tested energy wattage in kWh
- Q1 = Edison tested discharge or flow in GPH


P2 = Hydraulic model energy at a given time (unknown)

Q2 = Pump flows at a given time period from hydraulic model

 $P1/P2 = (Q1/Q2)^3$  $P2 = P1^*(Q2/Q1)^(1/3)$  in kWh

### Single and Dual Zone Energy Comparison(kW)

- 21
- Blue color line, energy consumption in 1 zone system
- Red color line, energy consumption in 2 zones system
- Green color line, energy savings over 24 hours period
- Purple color line cumulative energy savings



# Pump Energy Savings in Dollar Amount

- Annual average demand used for conservative totals
- Lowest tier rate of \$ 0.11092 per kWh
- Total annual savings \$120,720

22

| Water System | Average Daily Flow | 10,202 GPM             | Water System Summer Peak Day<br>Flow | 13,074 GPM                     |
|--------------|--------------------|------------------------|--------------------------------------|--------------------------------|
|              | Pump hours per day | Peak Electrical Demand | Annual kWh @ Peak Demand             | Annual kWh @<br>Average Demand |
|              |                    |                        | kWh                                  | kWh                            |
| Single Zone  | 175 hours          | 1,316 KW               | 12,874 <mark>,</mark> 175            | 6,213,121                      |
|              |                    |                        |                                      |                                |
| Dual Zone    | 220 hours          | 855 kW                 | 10,928,812                           | 5,124,761                      |
|              |                    |                        | kWh                                  |                                |
|              |                    | Totals Savings         | 1,945,363                            | 1,088,360                      |

Average day flow scenario was taken to perceive to use minimum tier rate to foresee minimum possible savings

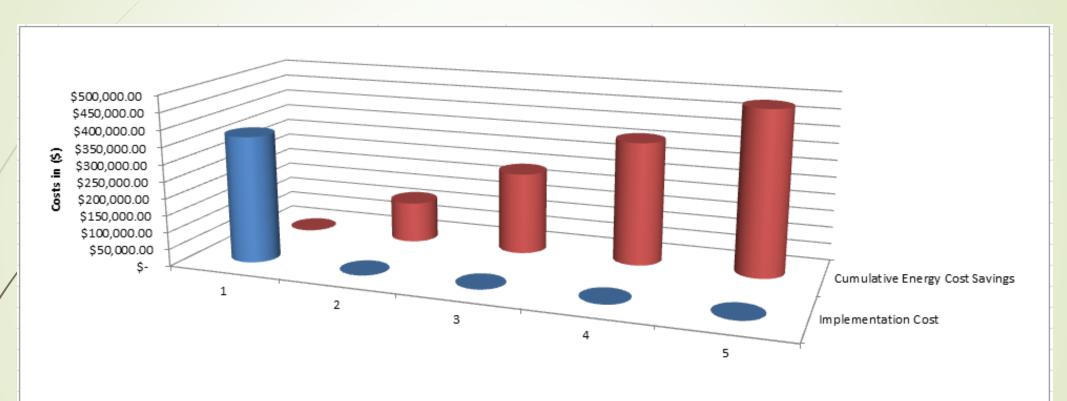
#### Energy cost savings per year

| Edison Energy<br>per kWh |      | Total Energy<br>Savings<br>(kWh)/Year | ToTal Costs   |
|--------------------------|------|---------------------------------------|---------------|
| \$ 0.1                   | 1092 | 1,088,360                             | \$ 120,720.89 |

# Dual Zone Implementation Payback Recovery Analysis

#### Implementation cost figures from Utilities Division

- Valve material and labor costs
- SCADA monitoring nodes setup
- Total implementation costs \$373,000
- Total annual savings \$120,720
- Payback Period 3.09 years


23

| VALVE DIAMETER SIZE | NO OF PIPE SEGEMENTS TO BE CLOSED | PIPE MATERIAL | IMPLEMENTATION COSTS/<br>VALVE (CONSTRUCTION &<br>MATERIAL) | TOTAL COSTS   |
|---------------------|-----------------------------------|---------------|-------------------------------------------------------------|---------------|
| 4"                  | 5                                 | CI            | \$ 5,000.00                                                 | \$ 25,000.00  |
| 6"                  | 12                                | CI            | \$ 6,000.00                                                 | \$ 72,000.00  |
| 8"                  | 8                                 | AC            | \$ 7,000.00                                                 | \$ 56,000.00  |
| 10"                 | 1                                 | CI            | \$ 10,000.00                                                | \$ 10,000.00  |
| 12"                 | 2                                 | CI            | \$ 12,000.00                                                | \$ 24,000.00  |
| 20"                 | 2                                 | CI            | \$ 18,000.00                                                | \$ 36,000.00  |
| 24"                 | 2                                 | CI            | \$ 25,000.00                                                | \$ 50,000.00  |
|                     |                                   |               |                                                             | \$ 273,000.00 |
|                     |                                   |               |                                                             |               |
|                     |                                   |               |                                                             |               |
| SCADA MODIFICATIONS | 2 STATIONS                        |               | \$ 100,000.00                                               | \$ 100,000.00 |
|                     |                                   |               |                                                             |               |
|                     |                                   |               |                                                             |               |
|                     |                                   |               | Total Implementation Costs                                  | \$ 373,000.00 |

Payback recovery time

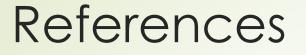
| Net Pay Back Analysis             | Costs            |
|-----------------------------------|------------------|
| Total Impelementation Costs       | \$<br>373,000.00 |
| Total Energy Savings per year     | \$<br>120,720.89 |
|                                   |                  |
| Number of Years for Cost Recovery | 3.09             |

### **Cost Benefit Analysis**



|                                | 1            | 2            | 3            | 4            | 5            |
|--------------------------------|--------------|--------------|--------------|--------------|--------------|
| Implementation Cost            | \$373,000.00 | 0            | 0            | 0            | 0            |
| Cumulative Energy Cost Savings | 0            | \$120,720.89 | \$241,441.78 | \$362,162.67 | \$482,883.56 |

Year


### Summary of Results

- Local pressures in the 2 zones system improved
- Over \$120,000 in energy savings
- Payback recovery time of 3.09 years for the estimated installation costs

### Next Topic

- Background (Geography, Topography, Problem Description)
- Project Objectives
- Relationship between Water Distribution System, GIS, and Hydraulic Modeling
- Hydraulic Modeling Concepts
- Project Approach Methodology and Analysis
- References
- Questions





- A GIS-based Water Distribution Model for Salt Lake City, UT. (n.d.). Retrieved April 5, 2015, from http://proceedings.esri.com/library/userconf/proc01/professional/papers/pap173/p173.htm
- Armstrong, L. (2012). Hydraulic modeling and GIS. Redlands, Calif.: ESRI Press.
- Boulos, P., & Lansey, K. (2006). Comprehensive water distribution systems analysis handbook for engineers and planners (2nd ed.). Pasadena, Calif.: MWH Soft.
- Bernoulli's principle Wikipedia, the free encyclopedia. (n.d.). Retrieved April 5, 2015, from https://en.wikipedia.org/wiki/Bernoulli%27s\_principle
- Chapter 15. (n.d.). Retrieved April 5, 2015, from http://www.intechopen.com/books/application-of-geographic-informationsystems/demand-allocation-in-water-distribution-network-modelling-a-gis-based-approach-using-voronoi-diagram
- Hydraulic Modeling Improves Water System Reliability, Efficiency. (n.d.). Retrieved April 4, 2015, from http://www.waterworld.com/articles/wum/articles/print/volume-2/issue-1/features/hydraulic-modeling-improves-water-system-reliabilityefficiency.html
- Innovyze Innovating for Sustainable Infrastructure. (n.d.). Retrieved from http://www.innovyze.com/
- (n.d.). Retrieved April 5, 2015, from http://resources.ccc.govt.nz/images/AllCommsImages/2012/HowChchWaterSupplyWorks.jpg
- Map Of United States. (n.d.). Retrieved April 5, 2015, from http://www.onlineatlas.us/united-states-map.htm
- Problems in Water Supply Distribution System. (2010, March 23). Retrieved April 5, 2015, from http://www.thewatertreatments.com/water/problems-water-supply-distribution-system/
- Real-time network hydraulic integrity monitoring software. (n.d.). Retrieved April 5, 2015, from http://www.innovyze.com/products/pressurewatch/
- Southern California Edison SCE. (n.d.). Retrieved from https://www.sce.com/wps/portal/home/!ut/p/b1/hY7NCsIwEISfxqPZhUDRYwStraAWhca9SCtxLaSJxGLw7U29q3Mb-OYHCDSQa54dN0PnXWNHT9I5nuNyXe6wyI-VxEJWuD0oJRGzBJwSgF-k8F--BvogPxpKILa-TW\_qBdBrv5lgUOOwcq2cMVAwVxNMEDf\_GEDHGAV7z9ali-\_h3muc0orfYfITEQ!!/dI4/d5/L2dBISEvZ0FBIS9nQSEh/
- Walski, T., & Chase, D. (2001). Water distribution modeling. Waterbury, CT, U.S.A.: Haestad Press.
- Walski, T., & Methods, I. (2003). Advanced water distribution modeling and management. Waterbury, CT: Haestead Press.
- Waterwise. (n.d.). Retrieved April 5, 2015, from http://www.ccc.govt.nz/homeliving/watersupply/ourwater/waterwise/index.aspx

