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SPATIAL AND TEMPORAL PATTERNS OF PM2.5 IN SANTIAGO CHILE 

INTRODUCTION 

The health impacts of inhaling particulate matter (PM) are well documented. Short term (hours, days) 
and long term (months, years) exposure leads to cardiovascular and respiratory diseases as well as lung 
cancer. Morbidity increases in patients with preexisting lung or heart diseases, the elderly and children. 
In children long term exposure to PM affects lung development and lung function (WHO 2006, WHO 
2013, Green & Sanchez, 2013).  

Particulate matter is a common air pollutant that consists of a mix of solid and liquid particles that varies 
by location. It is usually described by its mass concentration (micrograms per cubic meter, μg/m3) and 
classified according its particle diameter: PM10 refers to particles with diameters less than 10 microns 
(μm), and PM2.5 to particles with diameters less than 2.5 μm which include ultrafine particles that have 
diameters smaller than 0.1 μm.  European studies suggest that PM2.5 constitutes 50 to 70% of PM10 
(WHO Europe, 2013). Particles with diameters between 0.1 and 1 μm can remain in the atmosphere for 
days or weeks and can be carried long distances through the atmosphere (WHO Europe, 2006).   

Particulate matter is a mix of physical and chemical particles that can be emitted directly from a source 
(primary particles) or formed in the atmosphere through chemical reactions of gaseous pollutants (such 
as sulfur dioxide, hydroxyl radical and nitrogen oxides) in the presence of high solar radiation (secondary 
particles).  

Primary sources of PM are both man-made and natural. Man-made sources are combustion engines, 
solid fuel combustion for energy production for households and industry, and other activities such as 
construction, mining, agriculture, residential wood or coal burning for heating or cooking, pavement 
erosion due to traffic and the wear-down of brakes and tires. Natural sources of PM are soil, dust 
resuspension, forest and grassland fires to name a few. 

The objective of this project is to examine the spatial and temporal patterns of hourly PM2.5 
concentration in Santiago, Chile using 3D kriging and the ArcGIS Space Time Pattern Mining toolbox. The 
goal is to identify areas of concentration and levels of exposure that exceed recommended levels. The 
project will also explore seasonal variations of the concentration throughout the city and the 
relationship between PM2.5 and environmental factors (such as wind speed and direction, relative 
humidity, air temperature and elevation).  

LITERATURE REVIEW 

In 2015, the British Medical Journal published two papers (Shah et al. 2015 and Power et al. 2015) that 
showed effects of bad air quality on the brain. Shah et al. analyzed 94 studies (6.2 million cases of stroke 
in 28 countries) and found a significant positive correlation between air pollution levels during the seven 
days before hospitalizations or deaths due to stroke, with the level of exposure of on the day of the 
stroke being particularly significant. Power et al. conducted a study of 71,271 women between 57 to 85 
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years of age and found that symptoms of high anxiety were significantly more common among women 
exposed to high concentrations of PM2.5.  

These two studies provide evidence that exposure to PM2.5 promotes inflammatory processes in the 
body and increases oxidative stress by particles that have been deposited deep in the lungs. These 
particles are then carried by the blood to the heart, brain and other organs. Sherman (2015) from the 
Dana Foundation mentions that other studies have shown that cognitive function is poorest among 
adults that live in areas with higher PM2.5 concentrations and that the effect is equivalent to almost 2 
years of brain aging.  

The WHO Report on Health Effects of Particulate Matter (WHO, 2013) states that PM2.5 is a stronger risk 
factor for mortality that PM10, especially long term exposure. Long-term exposure to PM2.5 is associated 
with an increase in the long-term risk of cardiopulmonary mortality of 6–13% per 10 μg/m3 of PM2.5.  
The black carbon portion of PM2.5, which is the result of incomplete combustion, is considered a known 
carcinogen and a major contributor to global climate change because it absorbs light and generates heat 
in the atmosphere (Green, 2013, Riojas-Rodríguez et al. 2016). The WHO (2013) report also estimates 
that approximately 3% of cardiopulmonary and 5% of lung cancer deaths are attributable to PM globally. 
The same report defines the guidelines for acceptable levels of PM2.5 as a maximum of 10 μg/m3 for the 
annual average and 25 μg/m3 for the 24-hour mean (not to be exceeded for more than 3 days/year).  

Studies have shown that PM2.5 concentration has a distinct pattern during the day, showing a bimodal 
peak of concentration between 7 and 8 AM and another peak between 7 to 11 PM, with a minimum 
concentration around noon (Zirui et al. 2015, Gramsch et al. 2014, Perez & Gramsch 2016). 
Meteorological variables such as wind speed and air temperature have negative correlations that are 
stronger than the one for relative humidity on PM2.5 concentrations when these variables are compared 
on a daily basis (i.e. daily averages of PM2.5 and daily meteorological values). Wind speed has the most 
effect and shows an inverse correlation, especially when the topography of the area is considered as 
well (Zirui et al., 2015,  Jhun et al., 2013, Li et al., 2015). 

STUDY BACKGROUND 

Santiago, shown in Figure 1 (33.5 S, 70.5 W, 520m/1,706ft above mean sea level), is the capital of Chile 
and has a population of 7.3 million people. The city is surrounded by two mountains ranges: the Andes 
to the east and the Coastal range to the west, both with peaks higher than 2,000 meters above sea level, 
which makes air circulation difficult, especially in winter (when a low altitude thermal inversion layer 
forms and keeps pollutants close to the surface).  The city also has 4.7 million vehicles and 70% of the 
country´s total mineral and agricultural industries are concentrated in the surrounding area (MMA 2014 
and MMA 2015). 

 

 
 



  596B Summer 2017: Final Project Report 
Carolina Magri 

3 
 

 
Figure 1: Santiago and surrounding areas. 

Since 1997 Chile has implemented decontamination plans that have reduced the levels of air pollution in 
Santiago. PM2.5 levels declined for the first 13 years and have been stable since 2009.  However, 
Santiago persistently exceeds the daily and annual limits for PM2.5 concentrations, which are 50 and 20 
µg/m3, respectively, as defined in Chilean law (D.S. N°12/2011). The WHO guidelines mentioned above 
are also persistently exceeded (which are 25 µg/m3 for the daily mean and 10 µg/m3 for the annual 
mean). In 2005, the Chilean Ministry of the Environment and the World Health Organization estimated 
that, at a national level, 4,000 premature deaths are the consequence of atmospheric pollution, costing 
the country 670 million dollars in medical expenses and loss of productivity. These estimates were based 
on a paper by Cifuentes et al. (2005). 

A press release by Gramsch (2014) and a study by the Chilean Ministry of the Environment (MMA, 2014) 
indicate that the major sources of PM 2.5 in Santiago are residential burning of wood (22%, but reaching 
30% in winter time), public transportation (8%), other vehicles (36%, including 3% attributable to private 
vehicles) and industry and agriculture (33%). Gramsch et al. (2014) also reports that between 10% and 
20% of PM2.5 in Santiago is Black Carbon.  

The current policy in Santiago implements emergency measures based on PM10 levels, but this was 
expected to change to PM2.5 in 2017 when a new decontamination plan (called “Santiago Respira” or 
“Santiago Breathes”) would become law. An average of 24 hourly measurements is used to determine if 
pollution levels are high enough to implement mitigation measures. The new plan has a threshold of 79 
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µg/m3 for PM2.5 before emergency measures are implemented, whereas the current plan is based on 
PM10. 

EXPLORATORY ANALYSIS 

Hourly data is available from SINCA (the National Information System on Air Quality) for PM2.5 
concentrations and weather conditions for 11 measurement stations distributed throughout Santiago, 
as shown in Figure 2. 

 
Figure 2: Location of the measurement station in Santiago, Chile 
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Table 1 shows the characteristics of the measurement stations: 

Station Name Station 
Code 

Projection Easting Northing Elevation 
(meters) 

Independencia D11 UTM 19 346483.7 6300685.5 565 
La Florida D12 UTM 19 352507.8 6290309.8 601 
Las Condes D13 UTM 19 358305 6305906 789 
Parque O´Higgins D14 UTM 19 345662.1 6296020.7 535 
Pudahuel D15 UTM 19 337310 6298804.8 489 
Cerrillos D16 UTM 19 340266.3 6292741.9 509 
El Bosque D17 UTM 19 345307.4 6286812.7 578 
Cerro Navia D18 UTM 19 338974.8 6299356.2 496 
Puente Alto D27 UTM 19 352015.9 6282013.3 660 
Talagante D28 UTM 19 318942.6 6272305.8 309 
Quilicura D29 UTM 19 337348.8 6306794.1 482 

Table 1: Measurement Stations 

The data analyzed in this project are hourly measurements starting at 00:00AM on January 1, 2016 and 
ending at 11:00PM on December 31, 2016. For each station there are 8,784 observations (2016 was a 
leap year), giving a total of 96,623 points of which 3,892 (4%) correspond to missing values. PM2.5 
summary statistics of the hourly measurements recorded at station for the period of study are shown in 
Table 2. 

 D11 D12 D13 D14 D15 D16 D17 D18 D27 D28 D29 
Min 1 0 0 0 1 0 0 0 0 0 0 
Max 142 234 121 259 580 447 562 538 306 219 215 
Count 8305 8411 8074 8520 8292 8596 8375 8592 8649 8384 8490 
Variance 387.49 480.66 289.58 481.06 1063.37 818.26 1017.52 1258.81 406.29 610.34 431.25 
Std. Dev. 19.68 21.92 17.02 21.93 32.61 28.61 31.90 35.48 20.16 24.71 20.77 
Average 
Jan-Dec 29.02 29.20 25.98 28.66 32.04 31.08 34.72 32.91 25.94 24.49 28.05 
Average 
Jan-April 22.33 22.79 23.70 20.22 21.74 21.09 24.14 19.90 22.64 13.97 21.80 
Average 
May-Aug 42.67 43.70 32.70 44.45 51.58 51.87 55.79 56.15 38.22 43.99 41.69 
Average: 
Sept-Dec 20.87 20.02 20.73 20.52 20.93 19.42 22.84 21.71 17.11 14.02 19.93 

Table 2: Summary Statistics for hourly PM 2.5 concentration per station for study period. 
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A time series plot for each station is shown in the graphs below (Figure 3). A moving average of 168 
hours (one week) is shown in red and indicates variation in PM2.5 concentration between warmer and 
cooler months. The year was divided into three periods of 4 months each: January 1 to April 30, May 1 
to August 31 (which correspond to the months when emergency measurements are implemented) and 
September 1 to December 31. These limits are depicted as vertical red lines on each graph. Summary 
statistics for each of the three periods are also shown in Table 2. 
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Figure 3: Time series graphs for each station 
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In order to see behavior throughout the day more clearly, all measurements for 0 AM, 1 AM, 2 AM, etc. 
were plotted for the whole year, as shown in Figure 4. The data was separated into the three periods of 
4 months each mentioned before. Lines were added to show the hourly average for each period and the 
hourly average for the entire year (shown in black).  Winter (May to August, in red) always has higher 
PM2.5 concentrations than the annual average and the other two periods of the year. The periods of Jan-
April (blue) and Sept-Dec (green) follow a similar pattern, with higher afternoon PM2.5 concentrations in 
the Sept-Dec period than in the Jan-Apr period.  

Stations show similar behaviors though the day except for the Parque O´Higgins station which is very 
different in that the PM2.5 concentrations rise until 23:00 and then fall at 0:00. The reason for this has 
not been determined yet.  

The Las Condes station registers the lowest concentrations of PM2.5, which rise in the afternoon. The 
other stations (with the exception of Independencia) show that the concentrations are higher in the 
morning and afternoon, reaching their lowest point past midday (between 15:00 and 16:00). 
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Figure 4: Hourly PM2.5 concentrations for each station 
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To investigate the daily cycles further, a general relative semivariogram was calculated for each station 
based on formulas from Deutsch C. & Journel A., 1992 and Pitard F., 1993 applied to one dimensional 
datasets. These semivariograms allow a better assessment of cycles in PM2.5 concentrations and the 
semivariogram nugget effect can be used to provide an estimation of the error associated with assigning 
a concentration to one hour, 24 hours or any other time period that may be of interest.   

The traditional semivariogram is defined as follows: 

Semivariogram:     

𝛾𝛾(ℎ) =
1

2𝑁𝑁(ℎ) 
 � (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑁𝑁(ℎ)

𝑖𝑖=1

 

The semivariogram value is defined as half of the average squared difference between two values of 
PM2.5 separated by a distance h (lag).  

General relative semivariogram:   

𝛾𝛾𝐺𝐺𝐺𝐺(ℎ) =
𝛾𝛾(ℎ)

�𝑚𝑚−ℎ + 𝑚𝑚+ℎ
2 �

2 

The general relative semivariogram is the traditional semivariogram standardized by the squared mean 
of the PM2.5 measurements used for each lag (h). This effectively normalizes the variance and allows 
direct comparison between stations. 

The general relative semivariogram was calculated for the entire year for each station. Only the first 200 
lags (there are about 1470 lags total) are shown in Figure 6. General relative semivariograms were also 
calculated for the three 4 month periods and they look very similar to the annual ones as shown in 
Figure 5. 

 
Figure 5: General Relative Semivariogram for PM2.5 concentration from May to August, Quilicura 

station. 
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The graphs show a main cycle of 24 hours for all the stations (24 hours pass between one low point and 
the next in the semivariogram graphs) and a second cycle of 10 to 12 hours long for 6 of the stations 
(Independencia, La Florida, El Bosque, Puente Alto, Talagante and Quilicura). The secondary cycle is 
probably related to peak traffic hours (morning and evening rush hours, which in Santiago occur at 7 to 
9 AM and at 7 to 9 PM).   

The five stations with no secondary cycle are: Las Condes, Parque O´Higgins, Pudahuel, Cerrillos and 
Cerro Navia).  

The Parque O´Higgins station shows a sharp drop of values between 23:00 and midnight as was detected 
in the time series graphs (Figure 4). 

In the graphs, gamma (on the y-axis) gives an indication of the variability associated with each lag and 
represents the variance in PM2.5 concentrations. Pudahuel, Cerro Navia and Talagante have the highest 
annual variability and Las Condes has the lowest variability, but shows more variability in winter that 
some of the other stations, which may be due to wood burning fireplaces used for heating (which are 
common in this area of the city and they are used in the afternoons and evenings when PM2.5 
concentrations rise in Las Condes). These differences are also shown in Table 3. 

Table 3 shows relative variances (variance / average2) for each station’s data for the entire year and for 
the three 4-month periods. These relative variances correspond roughly to the sill (maximum value) of 
the semivariograms and are a measure of how variable PM2.5 concentrations are at each station, with 
higher values indicating higher variability. 

 

 D11 D12 D13 D14 D15 D16 D17 D18 D27 D28 D29 
Relative 
Variance 
Jan-Dec 

0.46 0.56 0.43 0.59 1.04 0.85 0.84 1.16 0.60 1.02 0.55 

Relative 
Variance 
Jan-Apr 

0.34 0.45 0.28 0.40 0.50 0.41 0.44 0.68 0.35 0.60 0.47 

Relative 
Variance 
May-Aug 

0.26 0.34 0.40 0.32 0.71 0.47 0.55 0.72 0.44 0.46 0.29 

Relative 
Variance 
Sep-Dec 

0.43 0.49 0.42 0.56 0.74 0.78 0.58 0.75 0.56 0.93 0.64 

Table 3: General Relative Gamma values for PM2.5 concentrations per station. 
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It is apparent that the Sep-Dec period has the highest variability (although not the highest average 
concentration) of PM2.5 values for all stations. 

Several stations have lowest relative variances in the Jan-Apr period (Las Condes D13, Pudahuel D15, 
Cerrillos D16, El Bosque D17, Cerro Navia D18 and Puente Alto D27), while the others (Independencia 
D11, La Florida D12, Parque O’Higgins D14, Talagante D28 and Quilicura D29) have lowest relative 
variances in winter (May-Aug).   
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Figure 6: PM2.5 concentration General Relative Semivariograms 
 for each station. 
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Finally, the annual data was aggregated by day of the week and separated into the three 4-month 
periods to see how the concentration of PM2.5 varies during the week. Figure 7 shows the average 
concentration of PM2.5 by the day of the week. 

 
Figure 7: PM2.5 concentration by day of the week 

During colder months (May-Aug) and for the entire year (Jan-Dec), the highest concentration is reached 
over the weekend (Saturday), declining by Monday and slowly rising again towards the end of the week. 
During warmer months (Jan-Apr and Sep-Dec) the highest concentration is reached by mid-week 
(Wednesday or Thursday). 

REGRESSION MODELS 

In order to investigate if any of the environmental factors measured at the monitoring stations (wind 
speed and direction, relative humidity (RH), air temperature and elevation) have an effect on PM2.5 
concentrations, a regression analysis was performed for each station (Table 4) using the Excel data 
analysis regression function.  
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Table 4: Regression model per station 

 D11 D12 D13 D14 D15 D16 D17 D18 D27 D28 D29 
Adjusted  
 R2 

0.11 0.12 0.06 0.08 0.12 0.16 0.16 0.20 0.12 0.26 0.15 

Intercept 47.18* 48.84* 5.21* 66.82* 25.18* 54.82* 86.92* 102.44* 15.17* 88.18* 29.06* 

Relative  
Humidity 

-0.03* -0.05* 0.21* -0.28* 0.13* 0.05* -0.19* -0.29* 0.26* -0.33* 0.04* 

Temperature -0.63* -0.77* 0.23* -1.42* -0.23* -0.69* -1.83* -2.37* 0.16* -2.09* -0.19* 

Wind  
Speed 

-5.89* -6.88* 0.17* -1.64* -3.62* -3.02* -2.55* -3.40* -3.39* 2.36* -3.69* 

Wind  
Direction 

-.004* -0.01* 0.04* 0.02* 0.023* -0.05* -0.04* -0.04* -.0005* -0.06* 0.013* 

* Significant p-value at 95% 

Regression models constructed for each station have very low adjusted R2 values, and high intercepts 
(varying between 5.21 µg/m3 for Las Condes - D13 and 102.44 µg/m3 for Cerro Navia - D18). In general, 
temperature and wind speed have large negative coefficients, except for 2 stations. Increases in wind 
speed increase Pm2.5 concentrations for Las Condes and Talagante, which are located in opposite 
directions from the center of Santiago and receive air pollution from the city depending on wind 
direction.  Increases in temperature decrease PM2.5 concentrations, except at the Las Condes and 
Puente Alto stations, which have the highest elevations.  Relative humidity has coefficients that vary in 
magnitude and sign. As relative humidity rises in winter, some stations located on the western side of 
Santiago (O’Higgins, El Bosque, Cerro Navia and Talagante) experience lower levels of PM2.5. These 
stations also report lower levels of PM2.5 when the air temperature rises.  Wind direction has very low 
coefficients and varying signs.  

Another regression model was performed for all stations together (Table 5) using the Ordinary Least 
Squares tool in ArcMap. This model also included for each station’s elevation, distance to main roads, 
the number of point sources of PM2.5 pollution within a 5 km radius and the amount of pollution 
produced by those sources (kg per day). The total amount of records with no missing values for the 
dependent or independent variables was 75,315.  
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Table 5: Regression model for all stations together 

Variable Coefficient Range of values 
Adjusted R2 0.113  
Intercept 39.47*  
Relative Humidity -0.004 2.7 to 105 % 

Temperature -1.001* -5 to 37 ºC 

Wind Speed -1.62* 0 to 20 m/sec 

Wind Direction -0.003* 0 to 359 º 

Elevation 0.008* 309 to 789 masl 

Number of 
pollution sources 

0.014* 4 to 398 

Pollution per day -0.009* 5.5 to 509 kg/day 

Distance to main 
roads 

0.005* 173 to 2295 mts. 

    * Significant p-value < 0.01 

The results were very weak, but the coefficients for each independent variable were similar to the ones 
reported in the literature review. The regression model’s intercept (of 39.47 µg/m3) is high relative to 
Chile and WHO limits, but is reduced by increases in environmental variables (relative humidity, 
temperature, wind speed and wind direction). Of these, temperature and wind speed have the largest 
coefficients and, considering the range of possible values for each variable, will have the largest effect 
on PM2.5 concentrations. Elevation has a very small positive coefficient, perhaps as a result of heating in 
winter. As can be expected, the number of surrounding pollution sources and distance to main roads 
both have positive coefficients. Pollution per day, however, has a negative coefficient, perhaps resulting 
from one-time voluntary estimates from several years ago which do not necessarily correspond to 
current conditions. 

Although the histogram of the residuals for each regression model appeared to follow a normal 
distribution, the Jarque-Bera statistic was significant at 0.01, indicating that the model predictions are 
biased.   Also the graph of predicted vs residuals did not look random, which confirms this result.   

The regression models are not good models for explaining or predicting the variability observed in the 
concentration of PM2.5 through the year. Since PM2.5 concentrations change throughout the year the 
mean and variance of the data are not constant, making the regression models unsuitable.  
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THREE-DIMENSIONAL KRIGING 

In order to interpolate PM2.5 concentrations across the city and through time, three dimensional Kriging 
was performed using GSLib software. The time stamp for each hourly measurement was used as the Z 
coordinate.  

The first step was to organize the data in the format that is read by GSLib programs. X and Y values were 
defined by the location of each measurement station, projected to WGS 1984 UTM Zone 19S. 

The time column (Z) which contains date and time data in the format of YY/MM/DD HH:MM was 
modified to Z values with increments of 1. Each station was assigned Z values from 1 to 8784 to 
represent the hourly measurements taken throughout the year. A Z coordinate of 1 was assigned to 
measurements taken on January 1, 2016 at midnight, 2 for measurements taken on January 1, 2016 at 
1:00AM and so forth, ending at Z coordinate of 8784 for measurements taken on December 31, 2016 at 
11:00PM1.  

Two experimental semivariograms using the data for the whole year (i.e. values calculated from the 
measured data) were calculated: 

- The omni-directional horizontal semivariogram considered only one period of time (1 hour). A 
band width of 5000 meters, a lag size of 2000 meters and 10 lags with a lag tolerance of 1000 
meters were used (Figure 8). 

 
Figure 8: Omni directional horizontal semivariogram illustration. 

 

                                                             
1 The Year 2016 was a leap year. 
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- The vertical semivariogram was set up to use values from one station at a time by defining a lag 
size of 1, 168 lags (one week of values) and a lag tolerance of 0.5. The vertical bins were allowed 
to extend 1000 m out from each station in the East, West, North and South directions. Since the 
closest stations are at least 2000 meters apart, this setup ensured that pairs would not include 
data points from two or more stations, creating a purely vertical semivariogram (Figure 9).    

 
Figure 9: Vertical semivariogram illustration. 

The experimental semivariogram values are shown in figures 10 and 11 as red points (joined by red 
lines). Models were fitted to the experimental data and are shown in blue points (joined by blue lines) in 
the same figures. 
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Figure 10: Horizontal Semivariogram´s experimental and fitted model 

 

 
Figure 11: Vertical Semivariogram´s experimental and fitted model 
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The omnidirectional horizontal semivariogram model is a composite model with a nugget effect of 0.03, 
a spherical model with a range of 28000 m and variance contribution of 0.42, followed by an exponential 
model with a range of 50000 m and variance contribution of 0.25. No anisotropy was included because 
the PM2.5 concentrations vary throughout the year and anisotropy may vary from one time step to 
another. 

The vertical semivariogram (though time) was modeled using the same composite model as described 
above, but the spherical model had a range of 10, which corresponds to 10 time steps of 1 hour each 
(shown in Figure 10). The range of 10 indicates that PM2.5 concentrations are correlated up to 10 time 
steps (hours). Beyond 10 hours, correlation decreases and the cyclical pattern in PM2.5 concentrations is 
apparent (as found in the general relative semivariograms constructed for each station). The cyclical 
component was simplified and modeled as slowly increasing exponential model with a range of 150 
hours. The nugget effect and variance contributions are the same as those used for the horizontal model 
(since both models must be combined in order to perform 3D kriging). 

Once the semivariograms models had been fitted to the experimental data, Ordinary 3D Kriging was run 
to create a grid of interpolated values in space and time. Ordinary kriging was chosen because it 
assumes that a constant mean is unknown, Z(s) =µ+Ɛ(s)2 and is capable of replicating trends in the data 
(in this case both in space and time). Kriging was set up to produce an estimated PM2.5 concentration at 
500 m intervals (in the North and Easterly directions over a large enough extent to cover the city) and 
every hour. The search radii used were 28000 m in the horizontal and 150 hours in the vertical 
directions. Due to limitations of the software, kriging was performed per month, producing almost 
6,000,000 interpolated values per month. 

After kriging, each time surface (slice) was extracted to create 8784 layers that were displayed in an 
animated video that shows how the PM2.5 concentrations change over time for the study area (see the 
attached mp4 video files). 

The thresholds for pollution levers in Santiago are as follows: 

Level µg/m3 
Good Less than 50 
Regular 50-79 
Alert 80-109 
Pre-emergency 110-169 
Emergency Above 170 

 

The videos are color coded from 10 to 170 µg/m3, with low values depicted in blue and high values 
shown in red. PM2.5 concentrations lower than 10 µg/m3 are also shown in blue, and concentrations over 
170 µg/m3 are also shown in red. 

                                                             
2 Ordinary kriging has an advantage over Simple kriging in that it replicates spatial trends by kriging using a local 
rather than a global (fixed) mean. 
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As a reference, The World Health Organization defines the guidelines for PM2.5 as a maximum of 10 
μg/m3 for the annual average and a limit of 25 μg/m3 for the 24-hour mean (not to be exceeded for 
more than 3 days/year). These levels are clearly exceeded in Santiago. 

June is a good example of the cyclic nature of the PM2.5 concentrations. There were two events (June 18 
and 27) where emergency measures were imposed due to the high levels of pollution in Santiago. 
January shows the same cyclic variation but at a much lower pollution level, although it also has an 
extraordinary event which occurred when a landfill to the south of Santiago caught fire and burned for 
several days, creating a sanitary emergency in the city due to pollution 

EMERGING HOT SPOT ANALYSIS 

The Emerging Hot Spot Analysis tool is part of the Space Time Pattern Mining toolbox. This toolbox has 
statistical tools for analyzing data distributions and patterns in the context of both space and time3.  

Interpolated surfaces were created for each month using kriging. Then X, Y and Z (representing a time 
stamp) coordinates were added to each interpolated point using GSLIB software.  The files were then 
transformed to text files to be able to import them as tables within ArcGIS. An XY event layer was 
created for each table and exported as a point feature to a file geodatabase. A python script was 
developed to add the time stamp (day, month, year and hour in the correct format for the Create Space 
Time Cube tool) to each point feature based on its Z value. Finally, the merge tool was used to create a 
point feature for the whole year (70, 087,536 points in total, 5.7 GB file geodatabase)  

This point feature was used to create a Space Time Cube (using the Create Space Time Cube tool) which 
is necessary step prior to running the Emerging Hot Spot Analysis tool. The space time cube is a netCDF 
file which aggregates timestamped point features into space-time bins. Within each bin the points are 
counted and summary statistics are calculated (the options available are: sum, mean, min, max, 
standard deviation and median)4. 

                                                             
3 http://pro.arcgis.com/en/pro-app/tool-reference/space-time-pattern-mining/an-overview-of-the-space-time-
pattern-mining-toolbox.htm 
4 http://pro.arcgis.com/en/pro-app/tool-reference/space-time-pattern-mining/learnmorecreatecube.htm 
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A time cube illustration is shown in figure 12: 

 
Figure 12: Illustration of a time bin cube5 (source: ArcGIS online help) 

The space time cube’s parameters replicated the data interpolated by kriging since the time steps were 
set to 1 hour and the X Y distance interval was set to 500 meters. Because the data was evenly spaced 
by design, the start time was chosen for the time step alignment and the mean of the PM2.5 points 
within each bin was selected as the summary statistic, which in this case corresponds to the interpolated 
PM2.5 value since there would be only one point in each space-time bin.  

The space time cube created had a point count of 7,979 locations over 8,784 time step intervals.  Each 
bin is 500 meters by 500 meters spanning an area 50,500 meters west to east and 39,500 meters north 
to south.  Each of the time step intervals is 1 hour in duration so the entire time period covered by the 
space time cube is 8,784 hours (which corresponds to the entire year of 2016).  Of the 7,979 total 
locations, all of them contain one point for each time step interval.  These 7,979 locations cover all 
70,087,536 space-time bin with no bins having missing values (because kriging was performed to 
generate values at the same spatial and temporal resolution). The overall trend of PM2.5 was reported as 
decreasing (this is the time trend in PM2.5 concentrations over the entire year). 

 A visualization of the values in the time cube is shown in figure 13. Due to memory limitations (the cube 
had a size of 3.6 GB) visualization of the cube was done using a second cube of 500 x 500 meters and 24 
hour intervals (which only weighs 195MB and can be rendered on screen). This second cube contains 24 
hour averages of PM2.5 concentrations, but is detailed enough to view spatial and temporal trends. 

 

                                                             
5 http://pro.arcgis.com/en/pro-app/tool-reference/space-time-pattern-mining/create-space-time-cube.htm 
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Figure 13: Space time cube visualization of PM2.5 values in in 3D. 

 

The Emerging Hot Spot Analysis tool identifies statistically significant trends in the clustering of point 
densities (counts) or summary fields (values of the variables) in the space time cube. It identifies if high 
or low values cluster in space and time assigning categories such as new, consecutive, intensifying, 
persistent, diminishing, sporadic, oscillating, and historical hot and cold spots6 to the results. 

An Oscillating Hot Spot is defined as “A statistically significant hot spot for the final time-step interval 
that has a history of also being a statistically significant cold spot during a prior time step. Less than 
ninety percent of the time-step intervals have been statistically significant hot spots”.  

                                                             
6 http://pro.arcgis.com/en/pro-app/tool-reference/space-time-pattern-mining/emerginghotspots.htm 

January 1, 2016 

December 31, 2016 
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An Oscillating Cold Spot is defined as “A statistically significant cold spot for the final time-step interval 
that has a history of also being a statistically significant hot spot during a prior time step. Less than 
ninety percent of the time-step intervals have been statistically significant cold spots”.7 

The Emerging Hot Spot analysis tool was able to identify Oscillating Hot and Oscillating Cold spots for the 
whole year. The results are shown in figure 14. 

 
Figure 14: Emerging Hot Spot Patterns for PM2.5. 

 

Other space time cubes with larger cell sizes or time steps were tested, but the results were very similar. 
Results other than oscillating hot and cold spots are somewhat difficult to identify because the data is 
highly variable through time (hourly, daily and seasonally). Additionally, the categories of the hot spot 
analysis are based on behavior in the last time step of the cube relative to previous ones. This makes it 
hard for the tool to identify hot spots in cyclical data such as PM2.5 concentrations (which are low in 
summer – at beginning and end of the year - and high in winter – midyear months, add to the fact that 
PM2.5 has a daily and weekly cycle variations). 

                                                             
7 http://pro.arcgis.com/en/pro-app/tool-reference/space-time-pattern-mining/learnmoreemerging.htm#GUID-
09587AFC-F5EC-4AEB-BE8F-0E0A26AB9230 
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The Emerging Hot Spot tool adds its results to the space time cube, so variability through time can be 
seen when the space time cube is rendered to show hot/cold spots, as depicted in figure 15. In this case, 
as for figure 15, the visualization was done using a second cube of 500 x 500 meters and 24 hour 
intervals. 

 
Figure 15: Hot and Cold Spots in the space time cube for PM2.5 in in 3D. 

 

The Emerging Hot Spot tool also shows the trend for each bin (downward, upward or not significant), 
and the percent of time steps in which the bin was classified as a significant hot or cold spot. 

Figure 16 shows the trend for each bin over time. The majority of the bins had a downward trend (at a 
99% confidence level) because the year starts with low values of PM2.5 which increase in the winter 
month and decrease towards the end of the year. There is an area surrounding Cerro Navia, Pudahuel 
and Parque O’Higgins stations where no significant trend was detected. 

June 1, 2016 
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Figure 16: Emerging Hot Spot Trend for PM2.5. 

 

Figure 17 shows the percent of time that the bins were classified as statistically significant hot spots. The 
map indicates that all bins were classified as hot spots between 26 and 44 percent of the time (high 
concentration of PM2.5 surrounded by bins with high PM2.5 concentrations). The area surrounding the El 
Bosque station has the highest percentages of hot spot classifications.  

The mean concentrations of PM2.5 for each bin’s time series vary between 23.8 and 34.1 µg/m3, with an 
overall annual mean for the whole cube of 28 µg/m3. From a health perspective it is interesting to 
examine the maximum values of PM2.5 in each bin, which vary between 107.5 and 525.3 with an overall 
annual mean of 240.4, indicating that during some hours of the year Santiago’s population is exposed to 
very high levels of PM2.5.  
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Figure 17: Percent of Hot Spot for PM2.5 concentrations. 

 

Figure 18 shows the percent of statistically significant cold spots over time in the study area. This map is 
an inverse of the hot spot areas, but also shows the area surrounding Las Condes, Puente Alto and 
Talagante stations as significant cold spots a high percentage of the year (between 63 and 70% of the 
time). 
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Figure 18: Percent of Cold Spot for PM2.5 concentrations. 

 

The Space Time Pattern Mining toolbox also includes a Local Outlier Analysis tool. This tool identifies 
statistically significant clusters with high or low values and outliers that are statistically different than 
their neighbors both in space and time8 .  

For the analysis to be statistically significant, the tool needs to perform permutations to determine the 
likelihood of the observed spatial distribution resulting from chance. Due to the size of the dataset and 
the minimum number of permutation required (99), the analysis was performed on a cube of 500 
meters and 12 hour intervals. 

Figure 19 shows the percentage of statistically significant clusters of high values of PM2.5 over time in the 
study area (HH: high value of PM2.5 surrounded by other high values). Similarly to the Hot Spot analysis, 
the area around El Bosque station is the one with highest percentages of high value clusters (associated 
to high PM2.5 concentrations).  

For bins of 12 hours, the maximum concentrations of PM2.5 vary between 92 and 342 µg/m3, with an 
average of the maximum values for the whole year of 158 µg/m3.  

                                                             
8 http://pro.arcgis.com/en/pro-app/tool-reference/space-time-pattern-mining/localoutlieranalysis.htm 
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Figure 19: Percent of statistically significant clusters of high values of PM 2.5 concentrations 

 

Figure 20 shows the number of time steps a bin was classified as a high cluster. The maximum (as the 
analysis was performed on a 12 hour cube) is 732. In the map, yellow indicates bins that were high 
clusters between 81 and 90 days in the year, orange between 91 and 120 days and red between 121 and 
145 days. The whole study area is exposed to high concentrations of PM2.5 for at least 81 days in a year 
(162 bins of 12 hours each). Areas surrounding Cerro Navia, El Bosque and La Florida stations are the 
ones that were exposed to high concentrations of PM2.5 for the highest number of days during the year.  
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Figure 20: Number of statistically significant cluster of high values of PM2.5 concentrations. 

 

The Local Outlier Analysis tool adds its results to the space time cube, so this variability through time can 
be seen when the space time cube is visualized for local outliers, as shown in figure 21. In this case, the 
visualization of the cube was done using cube of 500 x 500 meters and 24 hour time intervals. 
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Figure 21: Local Outlier in the space time cube for PM2.5 in in 3D. 

Figure 22 shows the following maps:  

• Top left: annual mean of PM2.5 concentrations. 
• Top right: median household income for 2009 and population below poverty level in 2015 (in 

red numbers). 
• Bottom left: number of bins classified as part of high-high clusters (high values surrounded by 

high value neighbors), measured in days.  
• Bottom right: population density in 2016 (people per hectare). 

Figure 22 shows that areas with high average annual PM2.5 concentrations show a general 
correspondence with areas of the city that have high population density and low median household 

June 1, 2016 
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incomes. The median household income map also shows the percentage of population classified as poor 
by income (shown in red numbers) for the municipalities where the data was collected (CASEN 20159). 

This correspondence indicates that a large part of Santiago’s population is exposed to high levels of 
PM2.5 and that this portion of the population likely relies on public health care, which usually unable to 
cope with high demand in winter. This can lead to delays in receiving medical attention and worsening 
on chronic respiratory conditions. The results of this study can help to prioritize allocation of health care 
resources, improvement of city infrastructure and indicate that more aggressive measures are needed 
to achieve Chilean and WHO guidelines.  

 

                                                             
9Page 16  https://www.gobiernosantiago.cl/wp-content/uploads/2014/12/DOCUMENTO-POBREZA-Y-DISTR-ING-
RMS-CASEN-2015.pdf.  

https://www.gobiernosantiago.cl/wp-content/uploads/2014/12/DOCUMENTO-POBREZA-Y-DISTR-ING-RMS-CASEN-2015.pdf
https://www.gobiernosantiago.cl/wp-content/uploads/2014/12/DOCUMENTO-POBREZA-Y-DISTR-ING-RMS-CASEN-2015.pdf
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Figure 22: Population density and median household income in US dollars. 
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CONCLUSIONS 

PM2.5 concentrations varies through the day, week and seasonally. Concentrations are especially high in 
winter months and most variable in spring. 

Variographic analysis shows that PM2.5 concentrations are highly correlated in time and space. General 
relative semivariograms clearly show that PM2.5 concentration had a main 24 hour cycle and a secondary 
cycle of 10 to 12 hours for several stations, probably related to traffic patterns. 

Environmental variables have negative coefficients but very weak predictive or explanatory power. 
Highest coefficients were for temperature and wind speed. 

Kriging surfaces show areas where PM2.5 concentrations are highest, which tend to be in the western 
part of the city. These areas have higher population density and lower income levels.  

While the Emerging Hot Spot analysis found zones in the PM2.5 concentrations and identified oscillating 
hot and cold spots. The Local Outliers Analysis determined that the study area was exposed to high 
levels of PM2.5   for at least 80 days during 2016.    
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DATA SOURCES: 

• National Information System on Air Quality: 
http://sinca.mma.gob.cl/index.php/region/index/id/M  

• USGS earth explorer: http://earthexplorer.usgs.gov  

http://sinca.mma.gob.cl/index.php/region/index/id/M
http://earthexplorer.usgs.gov/

