
McKenny 1 of 72

Stream Correction for Local Government GIS:
Project Analysis

Nicholas McKenny, GEOG 596B, Dec 14, 2015
Adviser: James O'Brien

Overview

In the briefest terms, this capstone project was to improve the spatial accuracy of stream

network lines using freely-available data and software. More particularly, the aim was to take the

surface water flow lines of the U.S. Geological Survey's National Hydrography Dataset (USGS's

NHD; nhd.usgs.gov) and, using free, open-source software and high-resolution digital elevation

models (DEMs), re-align those line features to a scale and form suitable for tax parcel boundary

work while retaining attribute information and topological relationships.

For aesthetic appeal and survey compatibility, this project initially aimed to smooth stream

flow lines using tangential arcs and line segments. The reasoning for this consideration is

covered in the following section.

Furthermore, the intent of this project was to provide local governments with a reproducible,

adaptable, and easy-to-follow process guide.

Ultimately, I was unable to complete this project in the expected time frame. Indeed, the

goals of “simplicity and accessibility” may be ultimately at odds with some more complicated

low-level considerations of using basic tools and with issues at processing large datasets. On a

lesser note, I determined the goal of smoothing lines using arcs to be unlikely worth the effort

required. Project implementation never progressed beyond the creation of a hydrologically-

enforced terrain. The intermediate outputs produced showed promise but were not without issues

and some room for improvement. The incomplete guide can be found in Appendix A &

Appendix B.

http://nhd.usgs.gov/

McKenny 2 of 72

Value and Potential Applications

 The following is a brief introduction to the value and potential applications of improved

stream lines along with a few statements regarding what was this project's scope.

As a scale-appropriate reference for neighborhoods, lots, and intersections; updated stream

lines would provide a better reference for set-back considerations in building permits and

evaluating run-off buffers. But my chief focus was on surface water flow lines that are of a scale

and accuracy suitable to define the geometry of, and align with, certain natural boundaries in

land records that are defined as stream centerlines. In my experience in the GIS department of

Prince George County, Virginia, many parcel boundaries are defined as "along centerline Ward's

Creek" or "center of Black Water Swamp" or "shoreline at low tide" (see Image B).

Image A: Left, NHD flow lines from a 1:24K scale. Right, NHD flow lines at a local map resolution, with
corrected stream lines for reference. [Local data from the County of Prince George, VA. Imagery courtesy
of the Commonwealth of Virginia.]

McKenny 3 of 72

In metes and bounds, qualitative, mathematical representations define surveyed runs and

arcs. The bounds, however, are subject to a certain amount of hand-waving and with good

reason: a river shoreline or a centerline of a swamp, while understandable concepts, defy a

precise, fixed definition. Most natural features do not possess clean, distinct edges at the scale of

property definitions. In addition, natural features vary and change over time. In surveys, the

survey-defined lines are connected across natural bounds through a single tie line or a chain of

Image B: Tax parcel boundaries and corrected stream lines, over a relevant survey, along I-295 in Prince
George County, VA. [Data from the County of Prince George, VA.]

McKenny 4 of 72

measurements. While modern land surveys may be internally precise to distances of less than an

inch, the fuzzy nature of natural features cannot be not adequately represented through survey tie

lines. Digital stream lines based on high-resolution terrain data, however, may work.

The USGS NHD FAQ states that positional accuracy standard of well-defined features at the

“high resolution” 1:24,000 scale dataset should be within 40' ("NHD FAQ"), but, even strictly

adhering to this standard, surveyed property boundaries are unlikely to be compatible with a

creek centerline that crosses a road forty feet north of the bridge. The maximum accuracy of any

updated hydrologic line features will be limited by that of the elevation data used to perform the

correction, but it is hoped that, given the somewhat loose and malleable nature of natural

boundary lines and the actual widths of streams, an accuracy of +/- 2.5 to 5 feet would be

acceptable. The fuzzy nature of natural boundaries works in favor of a reasonable accuracy goal:

unlike with survey-defined lines, here, a horizontal precision of a fraction of an inch would be

pointless.

Property lines that conform to these stream lines would be immediately recognizable as

following a natural boundary by their shape alone. Applying smoothing to create a continuous,

undulating line may even better communicate, at a glance, the presence of a natural feature.

Bézier curves in typical GIS line smoothing may be incompatible with common editing tools and

land record software in particular. To address this, I intend to explore options to smooth stream

lines using tangential arcs and straight lines, as is used in survey measurements.

I find it important to note that GIS property lines do not directly determine the amount of

taxable land. In Prince George County, real estate taxes are based primarily on the stated acreage

in recorded legal documents: deeds and plats. That said, land found to be encumbered or

unencumbered by natural features may affect the taxes due.

I had hoped this project would provide knowledge and an established workflow for counties

to follow or to build upon at little cost. Rural counties are typically responsible for a large area

McKenny 5 of 72

relative to their population and, thus, have a small workforce and budget. With an accessible

process, these counties might be free to improve the quality of their GIS features where they

might not otherwise choose to do so. The guide was to be presented as a downloadable PDF

guide for public use.

This project was intended to focus on the cartographic value of water flow lines and not on

hydrographic analysis. Furthermore, this process aimed to only update the stream network data

and not the entire NHD data model ("NHD Model"). While the attributes and topology of the

hydrographic flow lines, NHDFlowline, were to be retained where deemed possible and

worthwhile; maintaining spatial relationships with other existing points, lines, and polygons

within the NHD data model was beyond the scope of this project from the start. I had hoped that

retaining NHDFlowline attributes would be sufficient to map back to the original features and

data model.

Research Approach Overview

In the broadest terms, this project sought to create a fine-scaled stream network from a lower

resolution stream network and a high-resolution elevation surface. From a high view, the most

apparent approach appeared to be:

1. Identify sources of public GIS data.

2. Generate a hydrographic flow network using high-resolution DEMs.

3. Populate the generated network's features with attributes.

3a. Apply cartographic generalization and smoothing to stream polylines using lines and

arcs.

4. Evaluate results for accuracy and visual appeal.

5. Document how to perform steps two, three, and three-a using free, open-source tools.

McKenny 6 of 72

Individual Research and Production Steps:

Below, I will explore these proposed research and production steps in more detail.

Step 1: Identify Sources of Public GIS Data

As the particulars of data quality and nature greatly influence the possible analysis results

and required processes, the identification of available GIS data and their characteristics should be

the basis of any workflow guide. The data required for this process was to be (1) a line network

of surface water flow and (2) a surface of high-resolution elevation data. In addition, reference

data in the form of waterbody boundaries and aerial orthoimagery were optional but important.

This reference data should be current to the date of the elevation data collection and of

comparable accuracy.

The hydrographic flow network used are the surface flow lines from the USGS National

Hydrography Dataset (NHD). For reference, this linear feature class, NHDFlowline, and its

relationship with the rest of the NHD can be found on the poster-sized USGS NHD model (v2.2)

("NHD Model") (see Image C). A more detailed description can be found in the NHD User Guide

(NHD User Guide).

While much of NHD is intended for map scales no smaller than 1:24,000, this line network

possesses valuable traits that should be maintained if possible. The NHDFlowline polylines have

attribute connections to the greater NHD model, and their inclusion may useful for easily

mapping relationships back to the original dataset. Beyond other tables and classes, any local

extraction of NHDFlowline will have topological connections to a larger, Federally-maintained

dataset that is national in scope.

Within the NHDFlowline feature class itself, each line segment has attributes and geometry

describing both itself and its relationship within a topologically-sound flow network. The

vertices of NHDFlowline lines possess m-values and z-values according to the v2.2 data model

("NHD Model"). NHD measures, m-values, are used for linear referencing and identifying positions

http://nhd.usgs.gov/userguide.html
http://nhd.usgs.gov/

McKenny 7 of 72

along a length of water ("NHD FAQ"). However, z-values, which represent elevation in this

context, are not mentioned in the FAQ and do not appear to be present in my local extraction of

NHDFlowline.

Again, I did not expect all of these attributes, model connections, and spatial relationships to

survive this update intact and in a state that can be seamlessly dropped back into the existing

NHD, but I hoped enough would be maintained for some automated re-connections to be

feasible.

The NHD is freely available through a few methods through the USGS website at

Image C: NHDFlowline within the USGS's graphical representation of the NHD model, v2.2.

McKenny 8 of 72

nhd.u sgs.gov.

High-resolution elevation surface data is less universal in availability. For complete coverage

within continental United States, the USGS's National Elevation Dataset (NED, ned.usgs.gov)

offers, at best, 1/9 arc second resolution (~3 meter/10 foot) elevation data ("NED FAQ"). While

this is decent, I preferred a one meter resolution, at least.

For large areas, newer high-resolution DEMs are likely created from topographic lidar. Lidar,

a portmanteau of “laser” and “radar” (Merriam-Webster), is a technology wherein relative positions

are determined, like radar, like sonar, by the direction and return travel time of reflected signals,

in this case, a laser (ASPRS). In typical topographic lidar set-up, laser pulses, from a light aircraft

of a known attitude, GPS position, and flight path, blankets swaths of terrain below (see Image

D). The resulting product is a dense and accurate 3-D “point cloud” from which other products

like DEMs can be generated. Because of the size of the pulse footprint and the transmissivity of

some materials, a single laser pulse may produce multiple returns (ex: tree top, branch, trunk,

Image D: Airplane-based topographic lidar blankets swaths of terrain with laser pulses. Return pulses
create a dense and detailed 3-D terrain dataset. From bare earth, a single pulse is captured; from forest,
multiple; from water bodies, one or none.

http://ned.usgs.gov/
http://nhd.usgs.gov/
http://nhd.usgs.gov/

McKenny 9 of 72

and ground). This feature of topographic lidar can reveal features such as forest floors that might

be obscured in other methods such as photogrammetry. Individual points are classified as bare

earth, buildings, vegetation, noise, and such. However, the commonly-used infrared frequency is

absorbed by water. As a result, return signals “drop out”, and waterbodies are mostly empty

spaces within the lidar point cloud.

Lidar-derived DEMs, despite being a processing step removed from the point cloud, was the

data format to be used in the guide. While working as directly as possible with the source data

might be preferable to working with a derived product, some interpolation is required to form a

continuous surface from what is a collection of points with no defined measurements between

them. Compared to the relatively new subject of lidar 3-D point cloud processing, I hoped the

Image E: United States topographic lidar coverage around Virginia as listed within the USIEI on Dec. 15th,
2014.

McKenny 10 of 72

more established subject of raster-based geoprocessing would provide a more familiar and

accessible approach in terms of research, established procedures, and available software.

There appears to be no central clearinghouse for US public lidar data. The United States

Interagency Elevation Inventory (USIEI, coast.noaa.gov/inventory/) appears to be the most

complete representation of the national coverage of available Federal lidar data (NOAA). In

addition, I've found a Wikipedia page, "National Lidar Dataset (United States)", to be a valuable

resource, listing some additional state and local datasets (Wikipedia).

Where detailed, high-resolution DEMs are not available, local governments may consider

contracting its collection. Given an application for the data, doing so might be found to be

worthwhile.

On the subject of reference data, appropriate waterbody features are likely to be found within

a lidar dataset as “breaklines”, manually delineated shapes and boundaries to, in this case,

compensate for areas of empty data due to water's low reflectivity. The delivery of a lidar

product typically includes all the data and documentation needed to reproduce that product

(ASPRS).

Aerial orthoimagery is regularly collected by the federal and state governments.

Step 2: Generate a New Hydrographic Flow Network

This step and the one following was to make up the bulk of the end product guide: generating

a new hydrographic flow network based on high-resolution DEMs, and then populating those

new lines with attributes.

The process of generating stream flow networks from elevation rasters is fairly well

established, researched, and supported by software. In the interests of accessibility, I intended to

support the most common approach possible.

In exploring the subject of generating a stream network using sub-meter resolution, lidar-

derived DEMs, I found a series of publications by Poppenga et al. of the USGS. In particular, I

http://en.wikipedia.org/wiki/National_Lidar_Dataset_(United_States)
http://coast.noaa.gov/inventory/

McKenny 11 of 72

found two publications to be valuable resources on the issues and utility of high-resolution

DEMs in surface flow networks: a 2013 paper published in the Journal of the American Water

Resources Association (JAWRA) on detecting areas of hydrographic change in the NHD

("Hydrography Change"), and a 2010 USGS report on creating continuous hydrographic networks

("Selective Drainage"). While these publications focus on correcting NHD flow lines using high-

resolution elevation data, and not specifically on performing an area-wide resolution update, I

followed Poppenga's et al. process to the best of my ability and understanding.

The very basic concept of generating a stream network on a DEM is being able to determine

where, from any given cell in the DEM, a drop of water will flow next. A method is applied to a

DEM to create a grid of flow directions from which vector channels can be determined. Perhaps

the most common, simple means of doing this centers around the D8 method ("Hydrography

Change" 373). In the D8 method, for a given cell, the surrounding eight cells are considered, and a

hypothetical drop of water is assumed to flow in the direction that represents the biggest negative

elevation change (see Image F). Other methods exist, including the D-infinity method, but other

assessments indicate that the increased complexity offers little benefit for the computational

complexity over the simpler D8 method, except perhaps in delineating the complex flow

channels of low, flat swampy areas ("Hydrography Change" 373).

The method used by Poppenga et al. is to extract the upstream end points from the NHD flow

lines and then trace downstream ("Hydrography Change" 375-6). This approach seeds the new stream

Image F: D8 method for generating a flow direction raster from a DEM.

McKenny 12 of 72

network with the upper ends of the existing network. Generated lines should then correspond to

the existing NHD delineations within the NHDFlowline feature class.

While existing stream flow line delineation methods have been developed using coarse 30m

(~100ft) DEMs ("Hydrography Change" 372), the finer, lidar-based DEMs have some additional

considerations and challenges.

One issue was how to handle sinks, or cells for which there are no lower adjacent cells. A

downhill flow trace would stop at a sink yet, in reality, a surface water flow will almost always

progress all the way to the ocean. With older, small scale DEMs, sinks were treated as errors and

filled-in to preserve a continuous surface flow ("Selective Drainage"). At finer resolutions, dams

appear, but the sinks behind these may not be errors but instead the product of unrepresented

pipes and culverts. Underground features are, after all, beyond the detection of airborne

topographic lidar. To ensure continuous flow on finer DEMs, the surface is lowered above

underground conduits, breaching those dams and creating special “hydrologically enforced”

DEMs. By filling-in depressions, as is done on coarser resolution DEMs, water paths are

erroneously created through the lowest point of the leveled surface, rather than at the lowest

Image G: Actual path of water flow through culvert (blue/gray) compared to the erroneous breach path
(red) found by filling a depression. [Local data from the County of Prince George, VA. DEM from USGS.]

McKenny 13 of 72

point of the sink where an underground conduit would normally lie (see Image G).

Poppenga et al. address this problem by creating a hydrologically-enforced DEM from the

standard DEM. The 2010 report describes the following process ("Selective Drainage"):

1. Creating a hydrologically-conditioned DEM by filling-in sinks.

2. Extract these sinks by taking the difference between the original DEM and the

conditioned DEM.

3. In each sink, identify the lowest point.

4. From that lowest point, perform a least-accumulative-cost path analysis to identify a path

through that sink's dam.

5. Along these paths, lower the cells of the original DEM to that of the end point's elevation,

creating a hydrologically-enforced DEM.

A second concern is how to address flat areas and water bodies. The local nature of the D8

method (searching eight surrounding cells) may fail to represent the bigger picture, and manual

correction may be required in these situations.

In low, swampy areas, paths of water flow may be complex, braided, and very changeable

with water level and time. It seems that both low vegetation classified as ground and minor

Image H: Area of swamp near the Prince George/Surry border. Notice the bumpiness of the DEM and the
absence of a clear channel path. [DEM from USGS.]

McKenny 14 of 72

imprecisions may become dominant in this environment, creating areas with no clear path for

stream delineations (see Image H).

Due to lidar drop-out over water, when creating a triangulated irregular network (TIN) from

the lidar point cloud and then directly creating a DEM, slight variations from stray points and a

slightly irregular shoreline creates large facets and not the expected smooth surface (see Image

I). A downstream trace will then follow the valleys of this non-existent topography. As

mentioned in an earlier section, lidar producers typically create breakline lines and areas to

ensure clean edges, flat surfaces on ponds, and even downstream surfaces on rivers (ASPRS 289-

91), but an uneven surface can still manifest on smaller bodies of water.

Even where waterbodies are represented as flat, the downhill trace may not perform as

expected. In an examination of the utility of dense lidar for extracting hydrographic features

(Anderson 89), Anderson indicated that such an algorithm, lacking any local elevation differences,

may continue in its prior bearing, bouncing off the shorelines of lakes and larger streams.

A general-purpose solution might be to align such network lines to waterbody centerlines,

using lines and polygons or, otherwise, by manual correction using orthoimagery. A one-

dimensional line through a two-dimensional feature (ex: lake, river) does not describe passage

Image I: Wide stream on a DEM, smoothed, but uncorrected by breaklines, producing a lumpy surface.
[Data from USGS.]

McKenny 15 of 72

across a volume along a linear path. Where such an inexact representation of water flow and

network connectivity is required, the NHD classifies such a line as “Abstract” ("NHD Model").

Such a classification would be appropriate to distinguish lines in these areas from clear surface

channels.

One final issue is that the NHD does not represent every stream branch and extent within the

United States. Rather, the content of NHDFlowline is limited to what is deemed significant at

that scale, a scale updated lines will surpass. While these missing streams, ditches, and canals

may appear on surveys, they would not be generated from any network seeded from

NHDFlowline headwaters. The inclusion of these non-NHD flow lines was not a priority.

Creating and managing lines from two origins would require a modicum of additional steps and

user judgment Still, the simpler route would be to forgo deviating from the NHD source and

instead flag the issue for interested readers to explore further.

Step 3: Apply Attributes to the Features of the Generated Network

This was the second key step to address.

A single node-to-node polyline in the generated network might be represented in

NHDFlowline by multiple segments, split according attribute classifications such as flow

Image J: How a downhill trace might appear to "bounce" from shoreline to shoreline on a flat waterbody.
[DEM from USGS.]

McKenny 16 of 72

persistence (ex: intermittent, perennial), type (ex: surface, abstract, underground), edit date, or

watershed subsection. How the generated stream network is attributed depends on, among other

things, the user's needs. The NHD is a large data model and may not be suited to a user's aims.

This is the process I intended to expand upon:

First, unimportant divisions (ex: NHD edit date), should be conflated with adjacent and

similarly-attributed segments.

Second, wherever possible, the newly-generated polylines should be split and classified

based on high-resolution data. Otherwise, mapped classifications will reflect the coarser

resolution of the original NHD lines. Water passages through underground culverts may be

identified, split-off, and classified as such by comparing the generated network against the

difference of the original DEM and the hydrologically-enforced DEM. Similarly, “abstract”

segments of the flow network can be identified by overlaying delineated waterbody polygons.

Image K: The passage of water flow, manually classified according to terrain. The lines represent an
abstract, non-linear connection through the pond, the subsurface passage of the drain through the dam, and
the surface flow beyond. [Stream data from the County of Prince George, VA. Terrain data from USGS.]

McKenny 17 of 72

Using appropriate reference data is important here because, with the increase in resolution, some

features that might have been represented as lines at lower resolutions may be more

appropriately modeled as polygons. Existing polygon water features may have significantly

different boundary lines at the higher resolution as well, altering where the stream classification

changes.

As a side note, after classifying stream lines by type would be the appropriate point to

implement smoothing and cartographic generalization to the generated stream network. This will

be covered in the following Step 3a.

Third, map from the NHD any attributes that might be difficult to discern by other means or

that might be valuable references. Such attributes include flow persistence, feature names and ID

numbers, names and ID numbers of associated bodies of water, and reach codes shared by a

continuous stretch one or more lines.

Relating existing NHD lines and attributes with the newly generated stream network

geometry might be accomplished in a couple ways: aligning existing NHD line to new or

mapping existing attributes to the new lines. Alignment might be possible using ArcGIS's

Conflation toolset. For attribute mapping, I originally considered the USGS's NHD

GeoConflation tool ("NHD Tools") but have since found it to be not available for this project.

In both approaches, pairs of lines between datasets would be identified within mutual buffers

of a width based on the horizontal accuracy. Poppenga's et al. 2013 publication ("Hydrography

Change" 376-7) uses this same approach to identify stream line discrepancies.

Regardless of the approach, issues stemming from the resolution change and existing data

structure would need to be addressed. Again, some attributes may not be easy or worthwhile to

copy from the NHD. How data is modeled can change as resolution increases, including

topology. A point of intersection in the NHD may appear very different in the new stream

network.

McKenny 18 of 72

In addition, there may be errors or unrepresented changes within the NHD. As of yet, I've

seen no fully automated means of addressing these.

Step 3a: Apply Smoothing to Stream Polylines Using Lines and Arcs

As mentioned previously, smoothing network polylines using tangential arcs and line

segments may further improve the aesthetic value while retaining compatibility with a potentially

broad base of tools and generally reflecting the nature of survey measurements.

Smoothing may only be appropriate for parts of the flow network that model surface sections

of the hydrographic network best represented lines and not polygons. Abstract lines representing

an unspecified flow connection through an area such as ponds and wide streams may best be

represented as a series of straight segments approximating centerlines. Underground pipes and

culverts may be best represented as straight connections as might any irrigation ditches (see

Image L).

I had originally considered smoothing surface lines using tangent curves under the

Image L: Manually-updated flow lines with different smoothing/generalization based on type
classification. Dark blue surface lines are smooth arcs and lines. Lighter abstract lines are a series of long,
straight centerline segments. Through the dam and culverts, gray underground lines are straight, single
segments [Stream data from the County of Prince George, VA. Terrain data from USGS.]

McKenny 19 of 72

assumption they would be compatible with land record software. I've since learned curves would

complicate their use within ESRI Parcel Fabrics, negating their value for the effort.

Step 4: Evaluate Results for Accuracy and Visual Appeal

At this point, I had intended to evaluate the improvements offered by my workflow.

To evaluate the accuracy improvement of my process, I intended to compare the lines of the

new hydrographic network against existing photogrammetric lines of comparable accuracy.

Compared to quantitative analysis, the qualitative quality of visual appeal was to be best

evaluated in a side-by-side comparison (see Image M).

Step 5: Document Process Guide using Free, Open Source Tools

In writing the guide, the ultimate product of this project, I aimed to keep the workflow as

general as possible. While instructions reference specific tools and pieces of software, the steps

and the reasoning behind the steps should stand on their own and not be overly dependent on a

particular version of a particular product being available. My intent was to avoid creating step-

by-step instructions that, while precise, do nothing to explain the bigger picture.

For this reason, I organized the guide into a hierarchy of instructions. Software-specific

“Steps” are grouped under a “Task” overview. Multiple “Tasks” then make up a few very high-

level, general “Job” overviews. Since a guide cannot cover all cases and all users' needs, I've

Image M: New stream network lines (right) with smoothing and classifications compared to original NHD
lines (left). [Local data from the County of Prince George, VA. Terrain and NHD data from USGS.]

McKenny 20 of 72

added asides under the title “Go Further...” to highlight opportunities for the interested to explore

other options (ex: working with lidar point clouds or using other stream tracing methods).

The first pass at developing the process was with a student copy of ArcGIS 10.2, but with the

aim of also developing an open-source alternate set of steps. To keep the guide semi-independent

of any specific piece of software, I aimed to constrain steps to relatively common tools. I

originally intended to perform the open-source development in QGIS, under the misguided

impression it was like ArcGIS, but open-source. Since then, I've realized the true strength of

QGIS lies in the individual libraries of tools that it functions as a front-end interface for.

Implementation Retrospective

My original project timeline was to develop the ArcGIS version of the workflow in two

months, adapt this to an open-source implementation within a month, and complete a PDF guide

at the end of month four. This did not happen. The project, marred by multiple restarts and

unexpectedly long processing times, stretched to eleven months, even as it eroded in scope,

before being largely suspended. Still, the experience, while frustrating, was educational.

First and foremost, nearly every major aspect of this project lain beyond the realms of my

previous experience and education. While I now feel I've learned quite a bit on the subjects of

open-source GIS tools, working with rasters, processing very large datasets, and multiprocessing

in Python; the time taken in false starts and the learning process quickly and repeatedly proved

my initial timeline unrealistically optimistic in relation to my initial skill set.

Attempts to process large datasets can fail quietly or with an unspecific “Unexpected Error”

when the demands exceed the resources of the computer and software. The absence of

meaningful error messages adds a “poking around in the dark” aspect to identifying the

problem's source. Additionally, software documentation, examples, and tutorials are often

focused on very small datasets, and thus don't tend to address issues with larger datasets or even

processing limits, scaling, and performance.

McKenny 21 of 72

Processing the area of a county at a fine resolution requires much in terms of computer

resources and time. The elevation surface requires gigabytes of storage, multiplied by the needs

of output and intermediate data. Depending on the step, processing can take over a week.

For any readers possibly encountering issues with large datasets, I'd suggest first testing the

process on a smaller dataset to confirm the issue and to explore alternatives. If data size is indeed

the issue and alternative tools are not identified, then consider breaking the dataset into smaller

pieces for individual processing. Be aware doing so will require additional steps: breaking-up the

data; performing the operation on each piece, including seams; and merging the pieces back into

a whole.

Despite an easy-to-explain overview, adapting this approach to a step-by-step

implementation uncovered numerous complexities. Many were minor and concessions to

existing tools and data: multiple tools where a single tool does not exist, or additional checks to

verify and classify data. These amount to multiple steps and checks for tasks that, at high level,

can be described as in a single sentence.

A wrinkle with far more serious consequences was that, in the creation of a hydrologically-

enforced DEM, each sink drain path cannot be evaluated simultaneously. Normally, a great

advantage of raster processing is that a single operation can be applied to the entire surface.

However, the buffers of potential drain outlet locations overlap and can even include other sinks.

This means it becomes difficult, if not impossible, to keep drain start and end locations both

distinct from each each other and associated with its partner. Thus, identifying a drain path is

most easily processed one sink at a time. Furthermore, sinks contain sinks, requiring iteration

until no sinks remain.

While I briefly considered dividing sinks into subsets of non-overlapping drain areas, I

rejected this as being too complicated for the guide's purpose.

Unfortunately, this sequential processing then required deviating from step-by-step

McKenny 22 of 72

instructions to requiring a Python script. Even then, it slowly became apparent that, to reasonably

process ~270 thousand sinks in less than three weeks or so, I had to learn and implement

multiprocessing within the Python script. Though all this, I concluded creating a hydrologically-

enforced DEM from a topographic one is complicated enough to be organized into it's own high-

level job within the guide.

This is where the project currently sits: with a multiprocessing Python script that (mostly)

works and a single iteration of sink draining (mostly) completed. However, I must question if a

simple, accessible guide is possible if the approach requires a 700+ line multiprocessing Python

script. In fact, I'd wager that my dedication to simple, common tools ironically made my process

more complicated and my goals much harder to achieve. At the beginning, I reasonably expected

a step-by-step manual approach to be feasible; and I had little way of anticipating both, that

terrain sinks would have to be individually drained, and the consequences of that. This is on top

of the care needed in creating a guide for a general audience. Anyone attempting a similar goal

using any tools available may very well have an easier (and more successful!) time of it,

provided they keep in mind considerations in processing large datasets.

As a footnote, I'd like to add that open-source software is difficult to develop for, if one is

unfamiliar with the tools. For any readers just beginning to explore open-source GIS tools, I'd

recommend one not be distracted by pretty user interfaces and instead focus on trying-out the

individual command-line tools in open-source libraries. These are the true muscle of any open-

source implementation; QGIS, for example, often simply calls these tools with a text string. If

you do try QGIS, remember command-lines have a character limit. I found myself editing the

command string to be more concise. The open-source aspect is not present in the current version

of my guide. I changed my focus to ESRI software early on, and I never progressed far enough to

pick it up again.

McKenny 23 of 72

Output Analysis

At the time of this writing, I've produced one iteration of drain path identifications. On the

whole, I'd describe the results of my script as decent but with room for refinement.

First and foremost, there are some situations that cannot be correctly addressed with a wholly

programmatic approach because the underlying data cannot support it. Consider the close-up

from Image A (see Image N). The manually drawn path is obvious from aerial imagery and

programmatic lines. However, the cut-in by the culvert entrance is not represented in the

elevation data. Furthermore, the cell with the lowest elevation in the sink (highlighted) is

abnormally low: not by enough to be caught in quality control but by enough to skew the pool of

drain start cells.

Second, there exist connections that may be trivial for a reader to recognize as a drainage

channel, but requires more thought and analysis to identify programmatically. Specifically, I

have in mind chains of shallow sinks that are minor stream channels or drainage paths (see

Image O). These appear either minor enough to not contribute to a stream network or difficult to

distinguish from noise. I mention them only to highlight another reasonable limitation on

delineating drainage paths.

Image N: Left: Apparent stream path compared to aerial imagery and photogrammetric lines. Right: Drain
path against terrain data, with the lowest sink cell highlighted. [Local data from the County of Prince
George, VA. Imagery courtesy of the Commonwealth of Virginia. Terrain data from USGS.]

McKenny 24 of 72

The most reasonably obtainable approaches toward a moderate improvement in selecting

drain start and end cells are adjusting vertical and horizontal leeway, and considering slope and

elevation in the immediate vicinity of the potential drain endpoints.

My existing process already selects the drain start from all in-sink cells whose value is within

the vertical accuracy of the lowest elevation, and I think this works fairly well. My motivating

concern was that the single sink cell with the lowest elevation, perhaps by a fraction of an inch,

may not be the logical one for a drain start considering data imprecision.

A similar approach make work for evaluating horizontal differences, treating paths within

some fraction of the cell size as the same length. While this might lessen the influence of the

raster grid blockiness, I can't claim I have a solid idea how to implement such a change.

A more sophisticated pathing approach might yield the greatest benefits at the cost of

processing time. The current path delineation script is simplistic, only considering the nearest

connection between two zones of cells. Where multiple possible connections exist with the same

length, the one selected is the first identified. Instead, one might favor the lowest elevation start

and end cells, or the cells with the sharpest neighboring uphill elevation difference, such as what

Image O: Chain of shallow sinks, representing a minor, roadside drainage path. The right path correctly
connects under the driveway, but the left misses the other pipe and paths back into the yard. [Local data
from the County of Prince George, VA. Imagery courtesy of the Commonwealth of Virginia.]

McKenny 25 of 72

might exist adjacent to a culvert or canal wall. That said, in a visual check, I struggled to find any

cases where such a refinement would significantly change the delineated output location.

A more cosmetic issue with the initial results is that the Least Cost Path tool, on a flat cost

surface, does not produce straight lines in a project where many of these connections should be

direct connections (see Image P). Perhaps, instead of raster paths, a more desirable script output

would be a feature class of path end point pairs or of path line segments. Alternately, this might

be corrected much later as part of simplifying and smoothing the hydrographic network.

Conclusion

And so, here this project currently sits: incomplete and just short of a usable output. That

said, I have found this entire process to be enormously instructive in a way that only first-hand,

hands-on experience can be. While I do not intend to continue development of this process or

guide, the basic idea is sound. I welcome any expanding on this work, either to complete a guide

or to develop one's own project.

Image P: Crooked drainage path from an inlet (top left) to a forested gully (bottom right). Notice the
drainage grate partway between the path endpoints. [Local data from the County of Prince George, VA.
Imagery courtesy of the Commonwealth of Virginia. Terrain data from USGS.]

McKenny 26 of 72

Appendix A: The Incomplete Guide

Stream Correction for Local Government GIS:
An Incomplete Guide

Nicholas McKenny, Dec 14, 2015

Introduction

This is a guide for local governments to create a stream line network based on the USGS

National Hydrography Dataset (NHD), updated to a resolution appropriate for maps and

applications at the scale of a house lot or road intersection.

In addition, and central to this guide, is the creation of a hydrologically-enforced elevation

surface wherein apparent sinks are drained.

Furthermore, this guide aims to provide understandable instruction on the reasoning behind

each step so to encourage the adaption of this process to local circumstances.

That said, be aware that this guide is most definitely far from complete. In it's current state, it

almost produces a hydrologically-enforced DEM.

Format

The process described in this guide will be organized as following:

The seven or eight “jobs” are large, self-contained steps. Each job will start with an overview

Job 1: First Job

Job Overview

Task 1.1: First Task

Task Overview

Step 1.1.1: First Step

Step 1.1.2: Second Step

Task 1.2: Second Task

McKenny 27 of 72

section, looking ahead in broad terms.

Within each job are “tasks”: lower-level, non-software specific steps within that job. Each

task will be a somewhat high-level of description.

Below tasks will be, as needed, software-specific “steps”. The implementation described

within will be in terms of an ArcGIS 10.2 Standard license with the Spatial Analyst extension.

Within the process description, certain key names and values will be formatted in the

following way:

◦ Tool or software name: Add Rasters To Mosaic Dataset tool (Data Management toolbox,

Raster toolset)

◦ Data body, layer, or dataset: [StreamUpdateDB]

◦ Tool parameter name: Add New Datasets Only

◦ Variable or parameter value: [CVA] or OVERWRITE_DUPLICATES

This guide will also include frames as informational asides, such as below:

Or, you may see:

Disclaimers

First, while following this guide will increase the spatial resolution of existing NHD lines,

the scale of the existing NHD means some features are not represented and thus will also not be

present in new feature class based directly on the NHD. That is, the intended scale of a feature

Take Note

This guide will also sometimes include a frame highlighting a point or caveat of

particular importance.

Go Further...

Occasionally through this text, you will see frames such as this one briefly

mentioning alternate approaches or additional steps. While they will not be explored in

any detail, they are included should you wish to explore them further.

http://resources.arcgis.com/en/help/main/10.2/0017/001700000085000000.htm
http://resources.arcgis.com/en/help/main/10.2/0017/001700000085000000.htm
http://resources.arcgis.com/en/help/main/10.2/0017/001700000085000000.htm

McKenny 28 of 72

class determines not only the fineness of feature details, but also what features are included and

how they're represented. At the relative low resolution and small scale of the NHD, some minor

tributaries and areas of complex branching will be too small or fine to be represented.

Second, while this guide offers a particular series of steps, this is not the only, or even the

best, way to go about this.

Hardware and Software Requirements

This process requires ArcGIS, Standard license or better, plus the Spatial Analyst extension.

This guide was written using ArcGIS 10.2. The computer used will require tens of gigabytes of

storage free, depending on the area to be processed, plus ample space for scratch work. An

external drive may be helpful to free-up needed space.

Process Overview

1. Identify and acquire the necessary data for this project.

2. Prepare the data and work environment.

3. Created modified copies of the DEMs that allow for continuous water flow.

4. Extract headwater points from the NHD stream network.

5. Regenerate NHD stream network using DEMs.

6. Classify stream features based on terrain data.

7. Generalize stream features.

8. Apply NHD attributes to stream features.

Go Further...

If the costs of licensed software is a barrier, consider open-source. However, if you

are new to open-source libraries, I suggest you experiment on test data first. Be aware

adapting this process to open-source tools may be a time-intensive one.

McKenny 29 of 72

Job 1: Collect Data

Job Overview

First things first. Locate and acquire the data you'll be working with, plus any associated

metadata and documentation.

Task 1.1: NHD Stream Network

Task Overview

The NHD stream network is found in the NHDFlowline feature class, within the

larger NHD data model. The value of using NHDFlowline is that it's a part of a

maintained dataset with national (U.S.) coverage.

The NHD website offers multiple ways to download state or sub-region dataset

extractions at nhd.usgs.gov/data.html.

Task 1.2: Elevation Data and Waterbody Delineations

Task Overview

To update NHDFlowline, high-resolution terrain data will be needed. The terrain data

covered in this guide will be lidar-derived DEMs and associated breaklines.

Go Further...

This guide will not deal with any other features within the National

Hydrography Dataset, but you may consider updating them or applying their

attributes and relationships to your own data.

Take Note

Be aware that the NHD may contain better-than-1:24,000 scale or even local

resolution data for some areas. Check your area: it's unlikely, but maybe

someone has already contributed updated water flow lines to the NHD. If so,

your work can stop right here!

Or maybe you can be the one to contribute updated lines to the NHD. The

USGS is open to local contributions.

http://nhd.usgs.gov/data.html

McKenny 30 of 72

Airborne topographic lidar is capable of producing dense, highly accurate datasets in

the form of point clouds. These point clouds can be interpolated into a continuous,

ground-level surface, and the raster-based DEM is a common (and commonly-supported)

format. Furthermore, lidar products (ex: DEMs) are often delivered with all the base data

(ex: point clouds, breaklines) and documentation needed to reproduce the delivered

products. Among these are breaklines, delineated feature boundaries from which suitable

waterbody boundaries may be extracted.

While there appears to be no central clearinghouse for US public lidar data as of this

typing, the United States Interagency Elevation Inventory (USIEI,

coast.noaa.gov/inventory/) appears to be the most complete representation of the national

coverage of available Federal lidar data (NOAA). In addition, I've found a Wikipedia page,

"National Lidar Dataset (United States)", to be a valuable resource, listing some

additional state and local datasets (Wikipedia).

Task 1.3: Aerial Orthoimagery

Task Overview

Aerial orthoimagery is regularly collected by the federal and state governments.

Original data can be readily available to local governments.

Don't confuse resolution for spatial accuracy. Check metadata.

Remember that for orthoimagery, and all other reference data, a comparable accuracy,

Go Further...

The use of lidar-derived DEMs is a convenience of availability and

simplicity. Other options for data and geoprocessing exist, but, in the interests

of space and readability, only one common case will be covered herein.

Instead of working with lidar-derived DEMs, you may consider working

directly with the lidar point cloud.

http://en.wikipedia.org/wiki/National_Lidar_Dataset_(United_States)
http://coast.noaa.gov/inventory/

McKenny 31 of 72

resolution, and collection date to that of the elevation data is valuable.

Job 2: Prepare and Organize Data and Environment

Job Overview

Organize and, if needed, re-project your collected data to match the spatial reference of

the DEM. This includes importing the base data into the storage structure you'll be using in

the steps ahead, and making sure you have a back-up created.

Task 2.1: Install Software Tools

Task Overview

Install the necessary software, tools, and licenses for this project. Import and ready

the base data for processing.

Note that this guide will assume vector feature layers are stored within a local ESRI

file geodatabase.

This project will require an ArcGIS Standard license level plus the Spatial Analyst

extension. Installation help, if needed, is provided through ESRI resources.

Task 2.2: Determine Project Values

Task Overview

The source data, as well as the intended application, define and limit the product.

Finer and higher resolution is not always better, meaningful, useful, or desired. For

example, the NHD data horizontal accuracy standard is that 90% of points are within 40

feet of their true location. While some of these values may have to be determined by

experimentation and guesswork, it's best to determine and note these ahead of time.

Go Further...

Can you think of other useful reference data? Consider including it (ex:

building footprint polygons).

Take Note

A number of layers will be created in this process. To keep them organized, you

may consider naming them using the prefix identifying their step or task of origin

(ex: “s243_” for “Step 2.4.3”).

McKenny 32 of 72

Check metadata and documentation. Remember that accuracy and resolution are both

important, but not equivalent.

Feel free to record project values below for your own reference:

[DEM Tiles]

1. Collection Date Ranges:

2. Resolution/Grid Size:

3. Pixel Type:

4. Horizontal Coordinate System and Units:

5. Horizontal Accuracy:

6. Vertical Coordinate System and Units:

Take Note

This guide assumes a plus/minus (±) value measure of accuracy. If you find

accuracy expressed as a normalized root-mean-square error (RMSE), multiply

by 1.96 to produce will produce an accuracy range that 95% of points should be

within (ex: 1.9600*RMSEz => Accuracyz or 0.31 RMSE => 0.61 ft).

Lidar documentation will list multiple measures of vertical accuracy. This

guide will use Consolidated Vertical Accuracy (CVA).

Lidar documentation doesn't always list horizontal accuracy. Check the

metadata and flight documentation. For example, in developing this guide, I

used 2.5 ft resolution DEMs from a lidar collection with roughly a 3.28 ft (1 m)

horizontal resolution.

Finally, be sure your values are those associated with the data product you'll

be using and not with contributing data.

McKenny 33 of 72

7. Fundamental Vertical Accuracy ([FVA]):

8. Consolidated Vertical Accuracy ([CVA]):

[Waterbody Delineations]

1. Collection Date Ranges:

2. Horizontal Coordinate System and Units:

3. Horizontal Accuracy:

[NHD Extraction]

1. Horizontal Coordinate System and Units:

2. Horizontal Accuracy:

[Aerial Orthoimagery]

1. Collection Date Ranges:

2. Horizontal Coordinate System and Units:

3. Horizontal Accuracy:

Task 2.3: Set-up Work Environment

Task Overview

Set-up the needed parameters and workspace.

Create a work folder and a folder connection to it.

Create a file geodatabase, [StreamUpdateDB].

Task 2.4: Lidar-Based DEM

Task Overview

Organize or transform the acquired DEM tiles so they may be processed as a single

unit. If you haven't already done so (and you really should have), verify that the tiles are

seamless and that they have a set and consistent spatial reference.

McKenny 34 of 72

Step 2.4.1: Create Mosaic Dataset

Create [TopoDEMMosaic], a mosaic dataset, within [StreamUpdateDB]. Set

the horizontal and vertical coordinate systems to that of [DEM Tiles]; import the

coordinate system directly from the tiles if possible. Optionally, set the mosaic pixel

type to match [DEM Tiles].

Step 2.4.2: Populate Mosaic Dataset

Populate [TopoDEMMosaic] with references to [DEM Tiles]. Use the Add

Rasters To Mosaic Dataset tool (Data Management toolbox, Raster toolset). Easily open this

tool with a right-click on [TopoDEMMosaic] in the Catalog window and the

selection of “Add Rasters...”. Use the following parameters: leave Raster Type on

its default; select the folder containing [DEM Tiles] as the Input Data workspace;

check Update Overviews. Under advanced options, set Add New Datasets

Only option to OVERWRITE_DUPLICATES and check Calculate Statistics if

the source rasters lack statistics. Check the other settings according to your need.

Double-check [TopoDEMMosaic] for any errors or unusual values. If, under

Layers, you can zoom to Boundary and Footprint but not Image, and, under Layer

Properties, “Columns and Rows” are blank; then refresh [TopoDEMMosaic] through

the right-click menu. If statistics have not been created, do so within a Catalog

window using “right-click > Enhance > Calculate Statistics...”.

Verify that [TopoDEMMosaic] isn't missing any rasters. Overviews will need to

be rebuilt after adding new rasters.

Take Note

Be aware that, depending on the options enabled, populating the mosaic

may take tens of minutes to complete.

http://resources.arcgis.com/en/help/main/10.2/0017/001700000085000000.htm
http://resources.arcgis.com/en/help/main/10.2/0017/001700000085000000.htm

McKenny 35 of 72

Step 2.4.3: Export Mosaic to Single Raster Dataset

Create [TopoDEM], a single raster dataset from [TopoDEMMosaic]. In the

coming steps, a single raster may work better than a mosaic. Use the Copy Raster tool

(Data Management toolbox, Raster toolset), opened with a right-click on

[TopoDEMMosaic] and selection of Export > Raster to Different Format.

Create and save a map document for this project (ex: StreamUpdateProj), if you

haven't done so already. Set the data frame's coordinates system to match

[TopoDEM]. Set the layer symbology as you wish. Remove [TopoDEMMosaic]

after the following task.

Task 2.5: NHD NHDFlowline class

Task Overview

From the [NHD Extraction], extract a subset of the NHDFlowline features,

[NHDFlowline_Local], in the vicinity of your area of focus.

Step 2.5.1: Select NHD Lines

Add the [NHDFlowline] feature class from the [NHD Extraction] to your

map document.

Be sure this subset, [NHDFlowline Selection], has the same spatial

reference as [TopoDEM].

Create [NHDFlowline_Selection], the subset of [NHDFlowline] lines that

intersect [TopoDEMMosaic]. Use either the Select By Location menu option or the

Select Layer By Location tool (Data Management toolbox, Layers and Table View toolset) to

select features from [NHDFlowline] that intersect the boundary of

[TopoDEMMosaic. Export these selected features into [StreamUpdateDB] as a

new feature class [NHDFlowline_Selection]. Don't change the feature the

coordinate system until the next step.

http://resources.arcgis.com/en/help/main/10.2/0017/001700000072000000.htm
http://resources.arcgis.com/en/help/main/10.2/0017/001700000094000000.htm
http://resources.arcgis.com/en/help/main/10.2/0017/001700000094000000.htm

McKenny 36 of 72

Step 2.5.2: Extract Selected NHD Lines

Create [NHDFlowline_Local], a copy of [NHDFlowline_Selection]

projected into the coordinate system of [TopoDEM]. Use the Project tool (Data

Management toolbox, Projections and Transformations toolset).

Adjust the symbology of [NHDFlowline_Local] or import that of

[NHDFlowline]. Remove [NHDFlowline] and [NHDFlowline_Selection]

from the map document

Task 2.6: Reference Data

Task Overview

Similarly organize and re-project (as needed) the other reference data. On-the-fly

reprojections may be sufficient for [Aerial Orthoimagery], but not for data that will

participate in any geoprocessing.

Set or bookmark a project extent.

Step 2.6.1: Create an Orthoimagery Mosaic

In the example of the previous steps, import your project's reference data (ex:

[Waterbody Delineations] and [Aerial Orthoimagery]).

For [Aerial Orthoimagery], create and populate another mosaic dataset,

[AerialOrtho], within [StreamUpdateDB].

Step 2.6.2: Import Waterbody and Other Reference Data

Import [Waterbody Delineations] into [StreamUpdateDB], as the

polygon layer [WaterbodyPolygons], matching the coordinate system of

[TopoDEM]. You may need to merge and process [Waterbody Delineations]

to create a single polygon layer of just waterbodies.

A custom full extent can be set through the Data Frame Properties dialog on the

Data Frame tab. Access it by right-clicking on the data frame background or, under

http://resources.arcgis.com/en/help/main/10.2/0017/00170000007m000000.htm
http://resources.arcgis.com/en/help/main/10.2/0017/00170000007m000000.htm

McKenny 37 of 72

the Table of Contents, on the default “Layers” data frame.

Job 3: Create Hydrologically-Enforced DEM

Job Overview

Create a hydrologically-enforced DEM, [HydroEnfDEM], from [TopoDEM]. A

hydrologically-enforced DEM accommodates the modeling of interrupted downhill flow.

While topographic terrain data represents accurate surface elevations, continuous downhill

water flow requires channels corresponding to culverts and underground pipes to drain larger

sinks (areas with no apparent downhill outlet). Smaller sinks can be filled.

Task 3.1: [If Needed] Remove Tidal Sinks

Task Overview

Sometimes minor depressions can appear on the borders of tidal waterbodies. Since

these sinks will not be able to be drained to a lower elevation, the DEM within the tidal

waterbody must be lowered slightly. If this doesn't apply, skip ahead to the next task.

A visual check may be enough to identify the issue. Other options would be either to

preemptively lower any tidal waterbodies to some value below the lowest tide, or to

proceed with the process and perform this step if sinks are unable to be addressed by the

following steps withing this job.

Step 3.1.1: [If Needed] Extract Tidal Waterbodies

If the equivalent does not already exist, create [Waterbodies_Tidal] by

selecting features from [Waterbody Delineations] and saving them as a new

feature class or raster dataset.

Take Note

This job is iterative. Consider adding a numbered suffix (ex. “_01”) to datasets

created in this job.

McKenny 38 of 72

Step 3.1.2: Lower Tidal Waters to Slightly Below Low Tide

Create [TopoDEM_Lowered], a new version of [TopoDEM] with artificially

lowered sinks. Use Raster Calculator (Spatial Analyst toolbox, Map Algebra toolset) with

the following expression:

While I've lowered the DEM by 10 feet in this example, use your own judgment

to determine a relative or absolute elevation. Also, in the following steps, treat

[TopoDEM_Lowered] as [TopoDEM].

Task 3.2: Create Raster of Sink Depths

Task Overview

By filling sinks and calculating the difference from the original DEM, create a raster

where the value of each cell is the depth below the spill height of any enclosing sink. This

is set-up for creating a raster map of sink location in the next task.

Step 3.2.1: Create a Hydrologically-Conditioned DEM

Create [HydroCondDEM_01], a hydro-conditioned copy of [TopoDEM]. Use the

Fill tool (Spatial Analyst toolbox, Hydrology toolset).

This version [TopoDEM] has every sink removed by filling to a spill point. The

Take Note

This tool can take hours to complete. A 2.5' grid of Prince George

County, VA on a 2011 laptop took 3 hours.

Con("[TopoDEM]", Con("[Waterbodies_Tidal]",

"[TopoDEM]" – 10, "[TopoDEM]"))

Take Note

Outside of ArcGIS Desktop, this expression requires a full path for each

referenced raster.

http://resources.arcgis.com/en/help/main/10.2/009z/009z00000050000000.htm
http://resources.arcgis.com/en/help/main/10.2/009z/009z00000050000000.htm
http://resources.arcgis.com/en/help/main/10.2/009z/009z000000z7000000.htm
http://resources.arcgis.com/en/help/main/10.2/009z/009z000000z7000000.htm

McKenny 39 of 72

difference will be used to identify sinks.

Step 3.2.2: Find Difference Between DEMs

Create [SinkDifference_01], a raster of the depth of individual cells filled

the creation of [HydroCondDEM_01]. Use the Minus tool (Spatial Analyst toolbox,

Math toolset) with the following parameters: Input raster 1 as

[HydroCondDEM_01]; Input raster 2 as [TopoDEM]; Output raster as

[SinkDifference_01].

Task 3.3: Create Sink Map (using Region Group)

Task Overview

Create [SinkMap_01], an attributed raster identifying each contiguous group of

individual filled cells within [SinkDifference_01] as a sink with a unique ID

number. The preferred way, using the Region Group tool, breaks down when adding an

attribute table to a raster with a very large number of unique values (over 5 million, at

least). For any sizable area, the initial iteration within this job may have many more than

this count. To get past this initial hurdle, a second option, using the Sink tool, is offered

as the following task.

Step 3.3.1: Create Single Zone Raster of Non-Zero Cell Differences

Create [SinkDifferenceMask_01], an integer raster of all filled cells in

[SinkDifference_01], classified as a single zone. Use the Con tool (Spatial Analyst

toolbox, Map Algebra toolset) with the following parameters: Input conditional

raster as [SinkDifference_01]; Expression as ">0"; Input true

Go Further...

If you have building footprint or undrainable feature boundary data and

would like to remove them from any potentially drained sinks, this would be the

time.

http://resources.arcgis.com/en/help/main/10.2/009z/009z00000005000000.htm
http://resources.arcgis.com/en/help/main/10.2/009z/009z00000005000000.htm
http://resources.arcgis.com/en/help/main/10.2/009z/009z00000005000000.htm
http://resources.arcgis.com/en/help/main/10.2/009z/009z00000093000000.htm
http://resources.arcgis.com/en/help/main/10.2/009z/009z00000093000000.htm

McKenny 40 of 72

constant value as "1"; Output raster as [SinkDifferenceMask_01].

Step 3.3.2: Split Single Zone into Contiguous Sinks

Create [SinkMap_01]. Use the Region Group tool (Spatial Analyst toolbox,

Generalization toolset) with the following parameters: Input raster as

SinkDifferenceMask_01]; Output raster as [SinkMap_01]; Number of

neighbors to use as EIGHT; Zone grouping method as WITHIN; Add link

field to output as unchecked.

This tool defines an attribute table with Value and Count fields. If the attribute

table is missing, use the Build Raster Attribute Table tool (Data Management toolbox,

Raster Properties toolset). If attempts to create the attribute table ends in an

“unexpected error”, try the alternate approach below.

Step 3.3.3: Clean-up

Delete [SinkDifferenceMask_01].

Task 3.4: [Alternate] Create Sink Map (using Sink Tool)

Task Overview

If the preceding task will not work, create [SinkMap_01] using the Sink tool.

Step 3.4.1: Create Artificially Lower Filled Sinks

Create [TempLoweredSinks], a version of [HydroCondDEM_01] with

artificially lowered sinks. Use Raster Calculator (Spatial Analyst toolbox, Map Algebra

toolset) with the following expression:

Con("[SinkDifference_01]" > 0, "[HydroCondDEM_01]" –

10, "[HydroCondDEM_01]")

http://resources.arcgis.com/en/help/main/10.2/009z/009z000000z7000000.htm
http://resources.arcgis.com/en/help/main/10.2/009z/009z000000z7000000.htm
http://resources.arcgis.com/en/help/main/10.2/index.html#//0017000000m2000000
http://resources.arcgis.com/en/help/main/10.2/index.html#//0017000000m2000000
http://resources.arcgis.com/en/help/main/10.2/index.html#//0017000000m2000000
http://resources.arcgis.com/en/help/main/10.2/index.html#//0017000000m2000000
http://resources.arcgis.com/en/help/main/10.2/index.html#//009z00000039000000
http://resources.arcgis.com/en/help/main/10.2/index.html#//009z00000039000000

McKenny 41 of 72

Step 3.4.2: Create Flow Direction Raster

Create [TempLoweredFlow], a flow direction raster for

[TempLoweredSinks]. Use the Flow Direction tool (Spatial Analyist toolbox,

Hydrology toolset) with the following parameters: Input surface raster as

[TempLoweredSinks]; Output flow direction raster as

[TempLoweredFlow].

Step 3.4.3: Identify Sinks

Create [SinkMap_01]. Use the Sink tool (Spatial Analyst toolbox, Hydrology

toolset) with following parameters: Input flow direction raster as

[TempLoweredFlow]; Output raster as [SinkMap_01].

If the attribute table is missing and the Build Raster Attribute Table tool (Data

Management toolbox, Raster Properties toolset) fails, explore other means to divide the

input dataset into smaller units.

Step 3.4.4: Clean-up

Delete [SinkDifferenceMask_01], [TempLoweredSinks],

[TempLoweredFlow].

Task 3.5: Create Raster Attribute Fields

Task Overview

Create raster fields to store sink attribute data. These values will be the means by

which sinks are classified and processed.

Step 3.5.1: Create Field to Store Sink Type Classifications

Create the short integer field "Drain" in the [SinkMap_01] raster attribute

Take Note

Outside of ArcGIS Desktop, this expression requires a full path for each

referenced raster.

http://resources.arcgis.com/en/help/main/10.2/index.html#//0017000000m2000000
http://resources.arcgis.com/en/help/main/10.2/index.html#//0017000000m2000000
http://resources.arcgis.com/en/help/main/10.2/index.html#//0017000000m2000000
http://resources.arcgis.com/en/help/main/10.2/009z/009z00000054000000.htm
http://resources.arcgis.com/en/help/main/10.2/009z/009z00000054000000.htm
http://resources.arcgis.com/en/help/main/10.2/009z/009z00000052000000.htm
http://resources.arcgis.com/en/help/main/10.2/009z/009z00000052000000.htm

McKenny 42 of 72

table. This field will be contain your classification for each sink as to if they are to be

filled or to be drained and how. This roughly corresponds to types of sinks.

• <null> = unclassified

• 0 = false / “to be filled”. Sinks with neither surface in-flow or out-flow (ex:

most quarries). Also, insignificant sinks (i.e. noise) or those otherwise not

worth consideration.

• 1 = true / “to be drained via dam breaching”. Sinks with both surface in-flow

and out-flow (ex: most “false” sinks).

• 2 = true / “to be drained through bottom”. Sinks with surface in-flow but no

surface outflow. Rarer than the other two cases, but examples might be some

flooded quarries, sink holes, or dry lakes. Rare, and either ignored or manually

drained.

• 3 = complex/“requiring additional steps”. Don't ever actually use this as a

classification value; it is listed here for ease of reference and to raise

awareness of an important, but rare situation.

Take Note

Sinks can (and do) exist within sinks such that, when the containing sink

is drained (1 or 2) and not filled (0), new, smaller sinks are revealed.

Normally, these new sinks are handled on the next iteration of the process.

However, if the enclosing sink is to be drained via dam breaching (1) but the

internal sink is to be filled (0) and it contains the lowest elevations,

interfering with the dam-breaching pathing, the internal sinks will have to be

dealt with separately in an additional step. This should be a very rare case.a

McKenny 43 of 72

Step 3.5.2: Create Additional Sink Attribute Fields

Add the following attribute fields to [SinkMap_01]: "ElevMin",

"ElevSpill", "DepthMax", "DepthMean". In selecting a data type, consider the

raster type but understand that Zonal Statistics as Table will return double-precision

floating point fields in the coming steps.

Task 3.6: [If Needed] Process Sink Map In Chunks

Task Overview

If the following tasks to collect sink attribute data fail with an unexpected error, break

[SinkMap_01] into smaller chunks that ArcGIS can handle, run the step on each

[SinkMap_01] subset, and then merge the subset step results together.

Step 3.6.1: Split Sink Map

To create subset of [SinkMap_01], use the Con tool (Spatial Analyst toolbox, Map

Algebra toolset) with parameters similar to the following: Input conditional

raster as [SinkMap_01]; Expression as "(Value >= x) AND (Value <

Take Note

The goal here is not to classify every sink, but to filter-out irrelevant

features and to mark important sinks appropriately. Unclassified sinks can

be treated as 1, “to be drained via dam breaching”.

Go Further...

You may wish to consider a more complicated classification scheme,

such as by type.

Go Further...

Include any other fields you deem valuable for filtering and classifying

sinks or for draining them.

http://resources.arcgis.com/en/help/main/10.2/009z/009z00000005000000.htm
http://resources.arcgis.com/en/help/main/10.2/009z/009z00000005000000.htm
http://resources.arcgis.com/en/help/main/10.2/009z/009z00000005000000.htm
http://resources.arcgis.com/en/help/main/10.2/009z/009z000000w7000000.htm

McKenny 44 of 72

y)"; Input true raster as [SinkMap_01]; Output raster as

[SinkMap_yofz].

Here, x is initially 0, y is initially the number of zones in a single division, z is

the number of zones in [SinkMap_01], and "_yofz" is a suffix of your choosing to

keep the subsets distinct. After the first subset is created, run the tool again with

updated parameters until all of [SinkMap_01] is divided.

Pick a value of x that minimizes the number of subsets required. Picking a round

number will make count errors obvious to a visual check. Limited to 32-bit

processing, I found 5000000 to be within the upper limit of what Zonal Statistics as

Table can handle. Some experimentation may be needed to determine an acceptable

value for x.

Keep the suffix readable and able to be sorted. For example, I used

[SinkMap_01_05of18] for my roughly 18 million initial sinks.

Step 3.6.2: Merge Sink Map Chunks

To merge the step results back together, use the Merge tool (Data Management

toolbox, General toolset) with parameters similar to the following: Input Datasets

as ZonalSt_Topo_05of18, ZonalSt_Topo_10of18, ZonalSt_Topo_15of18,

ZonalSt_Topo_20of18; Output Dataset as ZonalSt_Topo.

Task 3.7: Create Sink Statistics Temporary Tables

Task Overview

Generate temporary tables containing sink statistics corresponding to the statistics

fields previously created in the [SinkMap_01] raster attribute table.

Step 3.7.1: Get Sink Minimum Elevations

Create [ZonalSt_Topo], a temporary table of the minimum elevation of each

http://resources.arcgis.com/en/help/main/10.2/0017/001700000055000000.htm
http://resources.arcgis.com/en/help/main/10.2/0017/001700000055000000.htm
http://resources.arcgis.com/en/help/main/10.2/0017/001700000055000000.htm
http://resources.arcgis.com/en/help/main/10.2/009z/009z000000w7000000.htm
http://resources.arcgis.com/en/help/main/10.2/009z/009z000000w7000000.htm

McKenny 45 of 72

sink. Use the Zonal Statistics as Table tool (Spatial Analyst toolbox, Zonal toolset) with the

following parameters: Input raster zone data as [SinkMap_01]; Zone

field as Value; Input value raster as [TopoDEM]; Output table as

[ZonalSt_Topo]; Statistics type as MINIMUM.

Step 3.7.2: Get Sink Spill Elevations

Create [ZonalSt_Hydro], a temporary table of the spill elevation of each sink.

Use the Zonal Statistics as Table tool (Spatial Analyst toolbox, Zonal toolset) with the

following parameters: Input raster zone data as [SinkMap_01]; Zone

field as Value; Input value raster as [HydroCondDEM_01]; Output

table as [ZonalSt_Hydro]; Statistics type as MAXIMUM.

Step 3.7.3: Get Sink Mean and Maximum Depths

Create [ZonalSt_Diff], a temporary table of the maximum and mean depth of

each sink. Use the Zonal Statistics as Table tool (Spatial Analyst toolbox, Zonal toolset)

with the following parameters: Input raster zone data as [SinkMap_01];

Zone field as Value; Input value raster as [SinkDifference_01];

Output table as [ZonalSt_Diff]; Statistics type as MIN_MAX_MEAN.

Task 3.8: Copy Statistics from Temporary Tables

Task Overview

Copy sink statistics from temporary table to the [SinkMap_01] raster attribute table.

For each temporary sink statistics table, do the following:

Step 3.8.1: Define Inner Join

Define an inner join on [SinkMap_01] to the temporary sink statistics table. In

ArcMap, use the Join Data window or use the Add Join tool (Data Management toolbox,

Joins toolset) with the following parameters: Layer Name as [SinkMap_01]; Input

http://resources.arcgis.com/en/help/main/10.2/0017/001700000064000000.htm
http://resources.arcgis.com/en/help/main/10.2/0017/001700000064000000.htm
http://resources.arcgis.com/en/help/main/10.2/009z/009z000000w7000000.htm
http://resources.arcgis.com/en/help/main/10.2/009z/009z000000w7000000.htm
http://resources.arcgis.com/en/help/main/10.2/009z/009z000000w7000000.htm

McKenny 46 of 72

Join Field as Value; Join Table as the sink statistics table (ex:

[ZonalSt_Diff]); Output Join Field as Value; Keep All Target

Features unchecked.

Step 3.8.2: Copy Values

Copy the values from the joined table to the appropriate field (ex: MEAN to

VAT_SinkMap_01.DepthMean) using the Field Calculator window.

Step 3.8.3: Clean-up

Remove the join. Double-check that no sinks have blank values. Remove the

temporary sink statistics tables.

Task 3.9: Classify Sinks: Minor by Attribute

Task Overview

Classify sinks in [SinkMap_01] via updating the "Drain" field. This task and the

following will use three approaches to classifying sinks: by attributes, by location relative

to other features and raster zones, and by manual classification.

McKenny 47 of 72

Step 3.9.1: Classify Minor Sinks To Be Filled

Set "Drain" = 0 for any sinks that are indistinguishable from noise (i.e. those

with extremely small areas or maximum depths). Use the Field Calculator dialog

directly or use the Calculate Field tool (Data Management toolbox, Fields toolset) with the

following parameters: Input Table as [SinkMap_01]; Field Name as Drain;

Expression Type as Python. Expression and the optional Code Block will

vary, as explained below.

Set Expression as follows, where “ClassifySink” is the name of a function and

the names between the exclamation points are those of the fields to be checked:

Go Further...

Before proceeding, consider both additional classification options and the

order in which the are best executed. Some options include:

1. ["Drain" = F] "DepthMax" < level of vertical inaccuracy.

2. ["Drain" = F] Sink notably outside area of interest (ex: Across a

waterbody that serves as the county boundary).

3. ["Drain" = T] Sink overlaps waterbodies.

4. ["Drain" = T] Area or volume >= X value. (Using "Count",

"DepthMean")

5. OR ["Drain" = F] Area or volume <= X value.

6. ["Drain" = T] Sink within 40' or 80' from NHD lines.

7. OR ["Drain" = F] Sink beyond 40' or 80' from NHD lines.

8. ["Drain" = F] "ElevMin" < sea level or minimum elevation.

9. ["Drain" = F] Location matches undrainable location (ex: quarries,

sinkholes)

ClassifySink(!Count!, !DepthMax!)

http://resources.arcgis.com/en/help/main/10.2/0017/00170000004m000000.htm

McKenny 48 of 72

In Code Block, define the function that's called in Expression:

Be aware that the dialog will sometimes reset Expression Type to VB.

Eliminating single-cell sinks and those with depths not greater than your data's

[CVA] is a good minimum. If you'd like to eliminate more, start with small values

and work up. Remember, the goal is not to classify all sinks, but to filter-out those not

worth consideration.

Task 3.10: Classify Sinks: Waterbodies by Overlap

Task Overview

Classify sinks in [SinkMap_01] that overlap [WaterbodyPolygons] as to be

drained ("Drain" = 1).

Take Note

The most important thing to know about copying any Python examples

in this guide is that leading spaces define blocks of code. Leading spaces,

however, are not always retained when copying and pasting.

Go Further...

Adapt the above code block or define your own scripts. If you're not

familiar with Python, peruse the documentation at python.org. See the

following page for comparisons in Python:

https://docs.python.org/2/reference/expressions.html#not-in

def ClassifySink(Count, DepthMax):
 # Set Drain = 0 if area or maximum depth is noise.
 if Count <= 1 or DepthMax <= [CVA]:
 return 0
 # Otherwise, reset Drain to NULL.
 else:
 return None

https://docs.python.org/2/reference/expressions.html#not-in
http://www.python.org/

McKenny 49 of 72

Step 3.10.1: Identify Sinks with Waterbodies

Use the Extract by Mask tool (Spatial Analyst toolbox, Extraction toolset) with the

following parameters: Input raster as [SinkMap_01]; Input mask data as

[WaterbodyPolygons]; Output raster as [SinkMap_01Waterbodies].

In my attempt, this step ran for 1h 45m on three feature classes that made up

[WaterbodyPolygons].

Step 3.10.2: Limit Sink Map Identified Sinks

Define an inner join on [SinkMap_01] to the [SinkMap_01Waterbodies]

attribute table. In ArcMap, use the Join Data window or use the Add Join tool (Data

Management toolbox, Joins toolset) with the following parameters: Layer Name as

[SinkMap_01]; Input Join Field as Value; Join Table as

[SinkMap_01Waterbodies]); Output Join Field as Value; Keep All

Target Features unchecked.

Step 3.10.3: Classify Identified Sinks

Set "Drain" = 1 for matched sinks. Use the Field Calculator dialog directly or

use the Calculate Field tool (Data Management toolbox, Fields toolset), as in the previous

step. Set Expression to 1; leave Code Block empty.

Step 3.10.4: Clean-Up

Remove join from [SinkMap_01].

Remove [SinkMap_01Waterbodies].

Take Note

Not all waterbodies contribute to downhill surface flow, such as

evaporation ponds and flooded quarries. Afterwards, these features may be

classified as 0 or 2.

http://resources.arcgis.com/en/help/main/10.2/0017/00170000004m000000.htm
http://resources.arcgis.com/en/help/main/10.2/0017/001700000064000000.htm
http://resources.arcgis.com/en/help/main/10.2/0017/001700000064000000.htm
http://resources.arcgis.com/en/help/main/10.2/009z/009z0000002n000000.htm

McKenny 50 of 72

Task 3.11: Manually Classify Undrainable Sinks

Task Overview

Spot check and manually classify sinks that cannot be drained through the dam-

breaching process (ex: those whose "ElevMin" < sea level or minimum elevation, or

those that match an undrainable location (ex: quarries, sinkholes). This will be done

similarly the step where sinks are matched to waterbodies, except you will be actively

defining and editing the associated polygon. The intent is to have polygons with Drain

classification intersect existing raster zones such that no raster zone is overlapped by two

polygons with different Drain classifications. Having a polygon with the bounds of a

sink but significantly smaller is fine as the classified areas remain that of the raster zones.

Having a polygon larger than the target sink, can cause unexpected issues.

Step 3.11.1: Extract Very Low Elevation Sinks

Extract sinks with anomalous minimum elevations (ex: below sea level) as

[SinkUnusual]. Use the Extract by Attributes tool (Spatial Analyst toolbox, Map

Algebra toolset) with the following parameters: Input raster as [SinkMap_01];

Where clause as "ElevMin < -2.585"; Output raster as

[SinkMap_01Unusual].

Manual classification should only be done on a select handful of sinks. Check the

number of extracted sinks. If your criteria extracts too many sinks, change or add to

the parameters.

Take Note

The above example takes the minimum drainable elevation on my data (-

2.875 feet, not 0) and subtracts the vertical accuracy value I used previously.

The value you use should be appropriate to your data.

http://resources.arcgis.com/en/help/main/10.2/009z/009z00000029000000.htm
http://resources.arcgis.com/en/help/main/10.2/009z/009z00000029000000.htm

McKenny 51 of 72

Step 3.11.2: Create Polygon Class for Manual Classifications

Create [SinkManualCheck], a polygon version of [SinkMap_01Unusual].

Use the Raster to Polygon tool (Conversion toolbox, Raster toolset) with the following

parameters: Input raster as [SinkUnusual]; Field as Value; Output

polygon features as [SinkManualCheck]; Simplify polygons as

unchecked.

Be aware that Raster to Polygon will both split raster zones into separate polygons

and also not retain the raster attribute table; both these issues will be addressed in the

next few steps.

Step 3.11.3: Merge Split Sinks in Manual Check Class

Merge split sink polygons back together. Use the Dissolve tool (Data Management

toolbox, Generalization toolset) with the following parameters: Input Features as

[SinkManualCheck]; Output Feature Class as [SinkManualCheck2];

Dissolve_Field(s) with gridcode checked; Create multipart features

checked.

Step 3.11.4: Restore Raster Attributes to Manual Check Class

Add the prior raster attribute fields to [SinkManualCheck2]. Use the Join Field

tool (Data Management toolbox, Joins Toolset) with the following parameters: Input

Table as [SinkManualCheck2]; Input Join Field as gridcode; Join

Table as [SinkMap_01Unusual]; Output Join Field as Value; Join

Fields as all fields selected.

Step 3.11.5: Symbolize Manual Check Class

Symbolize the features of [SinkManualCheck2] by the Drain field. Add the

populated values (0, 1, 2, &, optionally, 3) if they're not already present, and edit the

labels to be meaningful. Let the <NULL> value be symbolized as <all other

http://resources.arcgis.com/en/help/main/10.2/0017/001700000065000000.htm
http://resources.arcgis.com/en/help/main/10.2/0017/001700000065000000.htm
http://resources.arcgis.com/en/help/main/10.2/0017/001700000065000000.htm
http://resources.arcgis.com/en/help/main/10.2/0017/00170000005n000000.htm
http://resources.arcgis.com/en/help/main/10.2/0017/00170000005n000000.htm
http://resources.arcgis.com/en/help/main/10.2/0012/001200000008000000.htm
http://resources.arcgis.com/en/help/main/10.2/0012/001200000008000000.htm

McKenny 52 of 72

values> and select a contrasting, garish, awful color and pattern. Set the

transparency to 50% or so, and adjust the layer draw order so you can easily compare

against any reference data.

Step 3.11.6: Classify Identified Sinks

Start editing in the source containing [SinkManualCheck2]. Under the Create

Features window, check that templates each of the populated Drain values exist and

are correct. Delete and recreate the templates under the Organize Templates button if

needed.

Inspect and categorize the Drain field for each polygon in

[SinkManualCheck2]. For each row in [SinkManualCheck2], select and pan to

the polygon. Select and edit the Drain field using the Attribute window. Visually

inspect against imagery, terrain data, and any other reference data. For sinks

containing other sinks, classify so to eliminate one of the sinks, leaving the others to

be drained in following iterations. Remember that classifying a sinks as 0 will fill all

of the target sink. For sinks that won't be correctly addressed by this approach,

consider drawing a polygon mask to create a copy of [TopoDEM] with the deepest

part of the sink either copied from [HydroCondDEM_01], filling it, or set as NoData,

draining it.

Step 3.11.7: Delineate Additional Sinks

If appropriate and if you have reference data, draw and classify new polygons

inside any other sinks that require special attention (ex: water treatment plants,

outdoor pools, waste retention ponds).

Step 3.11.8: Apply Classifications Back To Sink Map

Update the Drain field in [SinkMap_01] to match those of the overlapping

polygons in [SinkManualCheck2].

McKenny 53 of 72

For existing polygons, create an inner join on [SinkMap_01] to

[SinkManualCheck2] and copy Drain.

If you created new polygons, then, for each classification in

[SinkManualCheck2], do the following:

Create a new feature class or layer of [SinkManualCheck2] filtered to that

single classification of Drain.

Extract sinks from [SinkMap_01] that are overlapped by these polygons using

the Extract by Mask tool (Spatial Analyst toolbox, Extraction toolset).

Create an inner join on [SinkMap_01] to this extract, and set Drain to match

the intended classification

Task 3.12: Remove To-Be-Filled Sinks and Update Sink Map

Task Overview

In this task, create a copy of the elevation surface, removing all sinks you marked to

be filled, and create a new copy of the sink map, updated to reflect theses changes. This

will create the necessary inputs required for creating sink drains in the next task.

Step 3.12.1: Create Map Of Sinks To Be Filled

Create [SinkMap_01Fill], a copy of [SinkMap_01] with all sinks classified

as Drain = 0 removed. Use the Extract by Attributes tool (Spatial Analyst toolbox, Map

Algebra toolset) with the following parameters: Input raster as [SinkMap_01];

Take Note

This repeatedly failed, apparently due to the size of [SinkMap_01].

Since manual classifications should apply to a handful of sinks, individual

manual edits will also work outside of a join, just be sure to double-check

values entered.

http://resources.arcgis.com/en/help/main/10.2/009z/009z00000029000000.htm
http://resources.arcgis.com/en/help/main/10.2/009z/009z00000029000000.htm
http://resources.arcgis.com/en/help/main/10.2/009z/009z0000002n000000.htm

McKenny 54 of 72

Where clause as "(Drain = 0) AND (Drain IS NOT NULL)"; Output

raster as [SinkMap_01Fill].

Step 3.12.2: Create Map Of Sinks To Be Drained

Create [SinkMap_01Smooth], a copy of [SinkMap_01] with all sinks

classified as Drain = 0 removed. Use the Extract by Attributes tool (Spatial Analyst

toolbox, Map Algebra toolset) with the following parameters: Input raster as

[SinkMap_01]; Where clause as "(Drain <> 0) OR (Drain IS NULL)";

Output raster as [SinkMap_01Smooth].

Step 3.12.3: Create Raster Of Cells To Be Filled

Create a raster of the elevation values in the sinks that are to be filled,

[TopoDEM_01FilledCells]. Use the Extract by Mask tool (Spatial Analyst toolbox,

Extraction toolset) with the following parameters: Input raster as

[HydroCondDEM_01]; Input raster mask data as [SinkMap_01Fill];

Output raster as [TopoDEM_01FilledCells].

This will be used in the following step to create an elevation surface with these

sinks removed.

Step 3.12.4: Create Terrain With To-Be-Filled Sinks Removed

Create [TopoDEM_01Smooth], a copy of [TopoDEM] with sinks classified as

Drain = 0 filled with cells from [HydroCondDEM_01]. Use the Mosaic to New

Raster tool (Raster Dataset toolset, Data Management toolbox)owing parameters: Input

rasters as [TopoDEM] and [TopoDEM_01FilledCells]; Raster Dataset

Name as [TopoDEM_01Smooth]; Pixel Type as [Pixel Type] (ex:

32_BIT_FLOAT); Number of Bands as 1; Mosaic Method as MAXIMUM.

http://resources.arcgis.com/en/help/main/10.2/0017/001700000098000000.htm
http://resources.arcgis.com/en/help/main/10.2/0017/001700000098000000.htm
http://resources.arcgis.com/en/help/main/10.2/009z/009z0000002n000000.htm
http://resources.arcgis.com/en/help/main/10.2/009z/009z0000002n000000.htm
http://resources.arcgis.com/en/help/main/10.2/009z/009z00000029000000.htm
http://resources.arcgis.com/en/help/main/10.2/009z/009z00000029000000.htm

McKenny 55 of 72

Step 3.12.5: Rebuild Raster Attribute Table

Rebuild the attribute table on [SinkMap_01Smooth] using the Build Raster

Attribute Table tool (Data Management toolbox, Raster Properties toolset).

Step 3.12.6: Repopulate Raster Attribute Table

Repopulate the attribute table in [SinkMap_01Smooth] with the fields from

[SinkMap_01]. Use the Join Field tool (Data Management toolbox, Joins Toolset) with

the following parameters: Input Table as [SinkMap_01Smooth]; Input Join

Field as Value; Join Table as [SinkMap_01]; Output Join Field as

Value; Join Fields as all fields selected except those already present in

[SinkMap_01Smooth].

Task 3.13: Generate Sink Drain Data

Task Overview

Run the Python script "DrainSink.py" (found in Appendix B) generating path drain

data.

Step 3.13.1: Run "DrainSink.py" Python Script

Create [Drain_01PathElevations], a raster of sink drain path elevations;

[Drain_01InternalMap], a raster map of sink internal drains; and

[Drain_01Errors], a tab-separated value file of undrained sinks. Use the Python

script "DrainSink.py" in Appendix B, edited to use the following parameters:

sink_map as [SinkMap_01Smooth]; topo_dem as [TopoDEM_01Smooth];

v_accuracy as [CVA]; d_limit as 200 meters or 626.168 ft, depending on

Take Note

The development of this guide did not progress beyond this task (11/2015).

The Python script mostly works, but it lacks polish and does not merge

individual sink drains into two outputs, despite what the guide says.

http://resources.arcgis.com/en/help/main/10.2/0017/001700000065000000.htm
http://resources.arcgis.com/en/help/main/10.2/index.html#//0017000000m2000000
http://resources.arcgis.com/en/help/main/10.2/index.html#//0017000000m2000000
http://resources.arcgis.com/en/help/main/10.2/index.html#//0017000000m2000000
http://resources.arcgis.com/en/help/main/10.2/index.html#//0017000000m2000000

McKenny 56 of 72

the horizontal units of [TopoDEM_01Smooth].

Step 3.13.2: Address Undrained Sinks

Inspect and address any sinks listed within [Drain_01Errors]. Either re-run

the script with a temporarily larger d_limit value, or plan to manually drain or

exclude the sink on the following iteration of this job.

To quickly inspect undrained sinks, try defining an inner join on the polygon

version of [SinkMap_01Smooth], created as a scratch feature class by

"DrainSink.py".

Step 3.13.3: Apply Drains To Terrain Surface

Create [TopoDEM_01Drained] by applying [Drain_01PathElevations]

elevations and [Drain_01InternalMap] mask as NoData values to

[TopoDEM_01Smooth]. Use Raster Calculator (Spatial Analyst toolbox, Map Algebra

toolset) with the following expression:

Take Note

This script will be processor-intensive and take days to complete. For

example, my processing of ~270K sinks on a 2011 8-core laptop took ~8

days.

Also, this script has an issue with multiprocessing conflicts wherein one

or more processes will fail early on. However, if one waits a bit and then

restarts the script, my experience is that, after a few attempts, all the

processes spawned by the script will remain functional.

Con("[TopoDEM_01Smooth]", Con("[Drain_01InternalMap]",

NoData, Con("[Drain_01PathElevations]",

"[Drain_01PathElevations]", "[TopoDEM_01Smooth]")))

http://resources.arcgis.com/en/help/main/10.2/009z/009z000000z7000000.htm
http://resources.arcgis.com/en/help/main/10.2/009z/009z000000z7000000.htm

McKenny 57 of 72

Alternately, use the following expression:

Step 3.13.4: Clean-up Script Scratch Data

The Python script creates a very large amount of scratch data. Delete or move it to

an external drive.

Task 3.14: Repeat Job

Task Overview

Repeat this job, incrementing names from “01” to “02” and so on, until no sinks

remain. At that point, re-name [TopoDEM_01Drained] as [HydroEnfDEM], remove

the intermediate data, and proceed to the next job.

Job 4: Generate Stream Network

Job Overview

Generate a new linear stream network from [HydroEnfDEM].

Job 5: Classify Stream Network By Terrain

Job Overview

Split, classify, and applying attributes to the generated stream network. It's important to

do so first based on data of similar accuracy, resolution, and temporal provenance, for

obvious reasons. In this job, you will split and classify stream network segments based on

your reference terrain data.

Job 6: Simplify Stream Network

Job Overview

Generating a stream network may produce a point dense stream network that should be

Con("[TopoDEM_01Smooth]" IS NOT NULL,

Con("[Drain_01InternalMap]" IS NOT NULL, NoData,

Con("[Drain_01PathElevations]" IS NOT NULL,

"[Drain_01PathElevations]", "[TopoDEM_01Smooth]")))

McKenny 58 of 72

generalized, removing extraneous points and smoothing.

Different line classifications may be generalized in slightly different ways. Artificial

paths through water bodies should approximate the feature's centerline and use only straight

segments. Underground conduits should, by default, be single, straight line segments.

Job 7: Populate Stream Network With NHD Attributes

Job Overview

Populate the simplified stream network with attributes from the NHD, such as names and

reach codes .

Closing Comments

While this guide is incomplete, I would encourage any readers to explore other tools that can

create a hydro-enforced DEM.

One worth a look is the Optimized Tool for DEM Pit Removal, found in a March 5th, 2013

ESRI blog post. For reference, the related term paper can be found at this URL:

www.ce.utexas.edu/prof/maidment/giswr2012/termpaper/jackson.pdf

This tool will still require undrainable sinks to be filtered-out. In addition, the maximum

raster size it can process is 50,000,000 cells, so you will need a plan to split your terrain data,

process it, and merge the pieces back into a processed whole. Finally, this only works the older

USGS ASCII DEM format; search for a raster-to-ASCII tool for the conversion.

http://www.ce.utexas.edu/prof/maidment/giswr2012/termpaper/jackson.pdf
http://blogs.esri.com/esri/arcgis/2013/03/05/optimized-tool-for-dem-pit-removal-now-available/

McKenny 59 of 72

Appendix B: DrainSink.py

Below is the Python code for the script "DrainSink.py". To assemble it, copy and paste the

lines below into a Python editing environment such as PyScripter. Be careful about preserving

leading spaces!

Be sure to update the paths to ones appropriate to your data before executing!

-*- coding: utf-8 -*-
---#------#
DrainSink_v0_09.py
Created on: 2015-11-12 (still beta)
Original Author: Nicholas McKenny, County of Prince George, Virginia
Usage: DrainSink_v0_09.py
Description: Generate drain_paths, a raster of drain elevations, and
generate drain_holes, a raster mask of future drain holes.
Intermediate output include sink_map_poly and two directories
of individual sink drain rasters.
WARNING: Does not yet successfully output merged sink drains.
User Notes:
Lines limited to 79 characters; 72 where possible.
Users should set own default values in main() function under
"Settings: User parameters".
Users should also double-check any modifications (ex: field names).
Users should be careful about existing drain_paths and drain_holes files.
This script has an issue with multiprocessing conflicts wherein one or more
processes will fail early on. However, if one waits a bit and then
restarts the script, my experience is that, after a few attempts, all the
processes spawned by the script will remain functional. (v0_09)
Analysis Notes (v0_08):
2015.11.01: In multiprocessing, persistent error around ExtractByMask()
in process_row():
"FATAL ERROR (INFADI)"
"MISSING DIRECTORY"
Appears stable after a few restarts.
Multiprocessing changes make each drain take ~2-4x as long.
On restarts, skipping rows creates incorrect time estimates.
2015.11.10: Process took 8 days. Complete and crashed python.exe instead of
waiting for acknowledgment
Analysis Notes (v0_09):
2015.11.12: Python.exe failure at drain_path merge; likely too large.
v0_10 Revision Goals:
- Exclude skipped sinks from time estimates. Variable ideas:
- [adjusted_start_time]:
- [skipped row count]:
- Fix "ExtractByMask()" multiprocessing conflict.
- If processes fail, script becomes stable after a few restarts.
- Potential to detect and restart processes automatically
---#------#

Import modules
import multiprocessing, os.path, time
import arcpy

Check out Spatial Analyst license
arcpy.CheckOutExtension("spatial")

---#------#

McKenny 60 of 72

def main():
 # Main script body

 # Script settings
 settings = {}

 # Settings: Debugging and Configuration
 settings["test_debug"] = 0 # TESTING: Debugging off
 ##settings["test_debug"] = 1 # TESTING: Debugging on, no output
 ##settings["test_debug"] = 2 # TESTING: Debugging on, test output only
 settings["test_kill_switch"] = 3 # TESTING: Iteration limit
 settings["test_name_base"] = "C:\\Users\\Nicholas\\Documents\\ArcGIS\\" \
 "Scratch\\Scratch.gdb\\test_" # TESTING: Test output name base
 ##settings["use_mp"] = 0 # CONFIG: Multiprocessing off (slow)
 settings["use_mp"] = 1 # CONFIG: Multiprocessing on (mostly not broken)

 # Settings: User parameters, input
 settings["sink_map"] = "C:\\Users\\Nicholas\\Desktop\\Capstone Project\\" \
 "Capstone GIS Data\\StreamUpdateArcGIS\\StreamUpdateDB.gdb\\" \
 "SinkMap_01Smooth" # SinkMap_01Smooth
 settings["topo_dem"] = "C:\\Users\\Nicholas\\Desktop\\Capstone Project\\" \
 "Capstone GIS Data\\StreamUpdateArcGIS\\StreamUpdateDB.gdb\\" \
 "TopoDEM_01Smooth" # TopoDEM_01Smooth
 settings["v_accuracy"] = 0.61 # VAccuracy, vertical accuracy value
 settings["d_limit"] = 626.168 # DLimit, max drain path length
 # (default: 200 m in ft)

 # Settings: User parameters, output
 settings["sink_map_poly"] = "C:\\Users\\Nicholas\\Documents\\ArcGIS\\" \
 "Scratch\\Scratch.gdb\\SinkMap_Poly" # sink_map_poly, polygon sink_map
 settings["tmp_dir"] = "C:\\Users\\Nicholas\\Documents\\ArcGIS\\" \
 "Scratch\\Drain_Intermediate" # Script-managed directory
 settings["drain_paths"] = "C:\\Users\\Nicholas\\Documents\\ArcGIS\\" \
 "Scratch\\Scratch.gdb\\Drain_PathElevations" # drain_paths, drain paths
 settings["drain_holes"] = "C:\\Users\\Nicholas\\Documents\\ArcGIS\\" \
 "Scratch\\Scratch.gdb\\Drain_InternalMap" # drain_holes, internal drain
 settings["drain_errors"] = "C:\\Users\\Nicholas\\Documents\\ArcGIS\\" \
 "Scratch\\Drain_Errors.txt" # TSV file of undrained sinks
 # NB: Other settings added below, after sink_map_poly is checked/created.

 # Verify input exists (sink_map, topo_dem)
 if not arcpy.Exists(settings["sink_map"]):
 print ("Aborting: 'sink_map' not found at '{0}'." .format(
 settings["sink_map"]))
 return
 elif not arcpy.Exists(settings["topo_dem"]):
 print ("Aborting: 'topo_dem' not found at '{0}'." .format(
 settings["topo_dem"]))
 return

 # Create sink_map_poly if it does not already exist
 if not arcpy.Exists(settings["sink_map_poly"]):
 scratch_1_path = arcpy.CreateUniqueName("Scratch1",
 arcpy.env.scratchGDB)
 scratch_2_path = arcpy.CreateUniqueName("Scratch2",
 arcpy.env.scratchGDB)
 arcpy.RasterToPolygon_conversion(settings["sink_map"], scratch_1_path,
 "NO_SIMPLIFY", "Value")
 arcpy.Dissolve_management(scratch_1_path, scratch_2_path, "gridcode")
 arcpy.JoinField_management(scratch_2_path, "gridcode",

McKenny 61 of 72

 settings["sink_map"], "Value")
 arcpy.Sort_management(scratch_2_path, settings["sink_map_poly"],
 [["ElevMin", "DESCENDING"]])
 arcpy.Delete_management(scratch_1_path)
 arcpy.Delete_management(scratch_2_path)

 # Add "DrainStatus" field if not already in sink_map_poly
 if len(arcpy.ListFields(settings["sink_map_poly"], "DrainStatus")) == 0:
 arcpy.AddField_management(settings["sink_map_poly"], "DrainStatus",
 "LONG")

 # Create tmp_dir if it does not already exist
 if not arcpy.Exists(settings["tmp_dir"]):
 arcpy.CreateFolder_management(*os.path.split(settings["tmp_dir"]))

 # Create/Reset drain_errors file and verify creation.
 f = open(settings["drain_errors"], "w")
 f.write("OBJECTID\tDrain\n")
 f.close
 if not arcpy.Exists(settings["drain_errors"]):
 print ("Aborting: 'drain_errors' not created at '{0}'." .format(
 settings["drain_errors"]))
 return

 # Settings: Environment and Other settings
 pcode = {'U1':'1_BIT','U2':'2_BIT','U4':'4_BIT',
 'U8':'8_BIT_UNSIGNED', 'S8':'8_BIT_SIGNED',
 'U16':'16_BIT_UNSIGNED', 'S16':'16_BIT_SIGNED',
 'U32':'32_BIT_UNSIGNED','S32':'32_BIT_SIGNED',
 'F32':'32_BIT_FLOAT', 'F64':'64_BIT'}

 arcpy.env.workspace = "in_memory" # Prevent unneeded file creation
 arcpy.env.overwriteOutput = True # Careful...
 arcpy.env.cellSize = arcpy.Raster(settings["topo_dem"]).meanCellHeight
 arcpy.env.outputCoordinateSystem = \
 arcpy.Describe(settings["topo_dem"]).spatialReference

 settings["lock"] = multiprocessing.Lock()
 settings["process_num"] = 0 # Process number (main)
 settings["cell_size"] = float(arcpy.env.cellSize)
 settings["spref"] = arcpy.env.outputCoordinateSystem
 settings["d_limit_grid"] = int(settings["d_limit"] /
 float(arcpy.env.cellSize)) \
 * float(arcpy.env.cellSize)
 settings["cur_fields"] = ["OID@", "SHAPE@", "Drain", "ElevMin"]
 settings["cur_where"] = "({0} IS NULL) AND ({1} IN (NULL, 1, 2)".format(
 arcpy.AddFieldDelimiters(settings["sink_map_poly"], "DrainStatus"),
 arcpy.AddFieldDelimiters(settings["sink_map_poly"], "Drain"))
 settings["rcount_this"] = 0 # Rows processed
 settings["rcount_total"] = 0 # Total row count (placeholder)
 settings["tprocess_start"] = 0 # Process start time (placeholder)
 settings["tloop_start"] = 0 # Row process start time (placeholder)
 settings["tmp_gdb_template"] = "{0}\\{1}-{2}.gdb" # Temp file gdb template
 settings["tmp_file_template"] = "{0}\\{1}-{2}" # Temp file template
 settings["tmp_data_template"] = "" # Temp data template (placeholder)

 # Set-up output: Create drain_paths if it does not already exist.
 if not arcpy.Exists(settings["drain_paths"]):
 # NB: Copy Raster avoids creation issue where, later, Append fails.
 scratch_3_path = "in_memory\\Scratch3"
 arcpy.CreateRasterDataset_management(

McKenny 62 of 72

 "in_memory", "Scratch3", arcpy.env.cellSize,
 pcode[arcpy.Raster(settings["topo_dem"]).pixelType],
 arcpy.Raster(settings["topo_dem"]).spatialReference, 1)
 arcpy.CopyRaster_management(
 scratch_3_path, settings["drain_paths"],
 pixel_type = pcode[arcpy.Raster(settings["topo_dem"]).pixelType])
 arcpy.Delete_management(scratch_3_path)

 # Set-up output: Create drain_holes if it does not already exist
 if not arcpy.Exists(settings["drain_holes"]):
 # NB: Copy Raster avoids creation issue where, later, Append fails.
 scratch_4_path = "in_memory\\Scratch4"
 arcpy.CreateRasterDataset_management(
 "in_memory", "Scratch4", arcpy.env.cellSize,
 "32_BIT_SIGNED",
 arcpy.Raster(settings["topo_dem"]).spatialReference, 1)
 arcpy.CopyRaster_management(
 scratch_4_path, settings["drain_holes"],
 pixel_type = "32_BIT_SIGNED")
 arcpy.Delete_management(scratch_4_path)

 # ---#------#
 # For each sink in sink_map_poly, seek a drain path

 # Count total rows. Format temporary output template strings.
 arcpy.MakeTableView_management(settings["sink_map_poly"],
 "in_memory\\Scratch5",
 "")
 settings["rcount_total"] = int(
 arcpy.GetCount_management("in_memory\\Scratch5").getOutput(0))
 arcpy.Delete_management("in_memory\\Scratch5")
 settings["tmp_data_template"] = \
 "{0}\\{1}_{2:0" + str(len(str(settings["rcount_total"]))) + "}"

 # Set-up multiprocessing (if settings["use_mp"] == 1)
 if settings["use_mp"] == 1:
 # Multiprocessing: Set number of processes to be utilized.
 process_count = multiprocessing.cpu_count() - 1 # Unhandled error?
 if process_count < 2:
 process_count = 2

 # Multiprocessing: Create row number ranges list in single-item tuples.
 # NB: Assumes row IDs match row count from 1 to rcount_total.
 # Example: r_ranges = [([1, 4559],), ([4560, 9118],), ([9119, 13677],)]
 r_ranges = []
 i = 1
 while i <= process_count:
 range_f = (
 (i - 1) * int(settings["rcount_total"] / process_count)
) + 1

 if i == process_count:
 range_t = settings["rcount_total"]
 else:
 range_t = i * int(settings["rcount_total"] / process_count)

 r_ranges.append(([range_f, range_t],))
 i += 1

 # Multiprocessing: Assign each row range to a child process.
 mp_processes = []

McKenny 63 of 72

 for r_range in r_ranges:
 settings["process_num"] += 1
 temp_process = multiprocessing.Process(
 target=process_range,
 args=r_range,
 kwargs=settings)
 temp_process.start()
 mp_processes.append(temp_process)
 settings["process_num"] = 0

 # Multiprocessing: Block this process until child processes complete.
 for this_process in mp_processes:
 this_process.join()

 else:
 # Run as single process.
 process_count = 0
 r_range = [1, settings["rcount_total"]]
 process_range(r_range, **settings)

 # ---#------#

 # OUTPUT: Update "DrainStatus" field. Create output data from temp data.
 if settings["test_debug"] == 0:
 # Merge "drain_errors" contents of tmp_dir to drain_errors
 settings["lock"].acquire()
 print("Processes complete. Merging drain_errors files.")
 settings["lock"].release()

 f = open(settings["drain_errors"], "w")
 f.write("OBJECTID\tDrain\n")
 i = min(1, process_count)
 while i <= process_count:
 g = open(settings["tmp_file_template"].format(
 settings["tmp_dir"], "tmp_errors", i))
 tmp_error_lines = g.readlines()
 if len(tmp_error_lines) > 1:
 f.writelines(tmp_error_lines[1:])
 g.close()
 i += 1
 f.close()

 # DEVELOPMENT: Mark sink_map_poly "DrainStatus" as 1 where processed.
 # Try Calculate Field tool (see Step 3.9.1)
 #arcpy.CalculateField_management(), maybe on a table view.
 pass

 # DEVELOPMENT: WorkspaceToRasterDataset_management can't hack it.
 # Merge "internal drain" contents of tmp_dir to drain_holes
 settings["lock"].acquire()
 print("Merging drain_errors files complete. Merging drain_holes.")
 settings["lock"].release()

 i = min(1, process_count)
 while i <= process_count:
 settings["lock"].acquire()
 print("Merging drain_holes from process {0}.".format(i))
 settings["lock"].release()

 arcpy.WorkspaceToRasterDataset_management(
 settings["tmp_gdb_template"].format(
 settings["tmp_dir"], "tmp_dhole", i),
 settings["drain_holes"],

McKenny 64 of 72

 "INCLUDE_SUBDIRECTORIES", "MINIMUM")
 i += 1

 # DEVELOPMENT: WorkspaceToRasterDataset_management can't hack it.
 # Merge "drain path" contents of tmp_dir to drain_paths
 settings["lock"].acquire()
 print("Merging drain_paths complete. Merging drain_paths.")
 settings["lock"].release()

 i = min(1, process_count)
 while i <= process_count:
 settings["lock"].acquire()
 print("Merging drain_paths from process {0}.".format(i))
 settings["lock"].release()

 arcpy.WorkspaceToRasterDataset_management(
 settings["tmp_gdb_template"].format(
 settings["tmp_dir"], "tmp_dpath", i),
 settings["drain_paths"],
 "INCLUDE_SUBDIRECTORIES", "MINIMUM")
 i += 1

 # Await user acknowledgment
 try:
 settings["lock"].acquire()
 input("Script reached end. Press Enter/Return to exit.")
 settings["lock"].release()
 except:
 pass
 # End main

def process_range(r_range, **kwargs):
 # Process a range of rows as a child process. "settings[]" in kwargs.

 # Get settings[] and set arcpy environment
 settings = kwargs
 arcpy.env.workspace = "in_memory" # Prevent unneeded file creation
 ##arcpy.env.scratchWorkspace = "in_memory" # NEVER use in_memory as scratch
 arcpy.env.overwriteOutput = True # Careful...
 arcpy.env.cellSize = settings["cell_size"]
 arcpy.env.outputCoordinateSystem = settings["spref"]

 # Update settings. Create intermediate output File GDBs and workspaces.
 settings["rcount_total"] = r_range[1] - r_range[0] + 1

 # Define process-unique scratch in attempt to avoid this error:
 # "FATAL ERROR (INFADI)" "MISSING DIRECTORY".
 settings["scratch_dir"] = "{0}\\Scratch-{1}".format(
 settings["tmp_dir"], settings["process_num"])
 settings["scratch_gdb"] = "{0}\\scratch.gdb".format(
 settings["scratch_dir"])
 if not arcpy.Exists(settings["scratch_dir"]):
 arcpy.CreateFolder_management(
 *os.path.split(settings["scratch_dir"]))
 if not arcpy.Exists(settings["scratch_gdb"]):
 arcpy.CreateFileGDB_management(
 *os.path.split(settings["scratch_gdb"]))
 arcpy.env.scratchWorkspace = settings["scratch_dir"]

 settings["tmp_dpath_gdb"] = settings["tmp_gdb_template"].format(

McKenny 65 of 72

 settings["tmp_dir"], "tmp_dpath", settings["process_num"])
 if not arcpy.Exists(settings["tmp_dpath_gdb"]):
 arcpy.CreateFileGDB_management(
 *os.path.split(settings["tmp_dpath_gdb"]))
 settings["tmp_dhole_gdb"] = settings["tmp_gdb_template"].format(
 settings["tmp_dir"], "tmp_dhole", settings["process_num"])
 if not arcpy.Exists(settings["tmp_dhole_gdb"]):
 arcpy.CreateFileGDB_management(
 *os.path.split(settings["tmp_dhole_gdb"]))
 settings["tmp_errors_file"] = settings["tmp_file_template"].format(
 settings["tmp_dir"], "tmp_errors", settings["process_num"])
 f = open(settings["tmp_errors_file"], "w")
 f.write("OBJECTID\tDrain\n")
 f.close()

 # TESTING: Output settings{} as used by this process.
 if settings["test_debug"] > 0:
 settings["lock"].acquire()
 print("TESTING-{0}: r_range[{1}, {2}] with these settings:".format(
 settings["process_num"], r_range[0], r_range[1]))
 print("settings{")
 tmp_settings_keys = sorted(settings.iterkeys())
 for key in tmp_settings_keys:
 print(" {0}: {1}".format(key, settings[key]))
 print("}")
 settings["lock"].release()

 # For each sink_map_poly sink in range, seek a drain path.
 # ---#------#
 child_where = "{0} AND ({1} BETWEEN {2} AND {3})".format(
 settings["cur_where"],
 arcpy.AddFieldDelimiters(settings["sink_map_poly"], "OBJECTID"),
 r_range[0], r_range[1])

 with arcpy.da.SearchCursor(settings["sink_map_poly"],
 settings["cur_fields"], child_where,
 settings["spref"]) as cursor:

 settings["tprocess_start"] = time.time()

 for row in cursor:
 # Update progress variables
 settings["rcount_this"] += 1
 settings["tloop_start"] = time.time()

 # TESTING: Short-circuit increment and exit. Print row data.
 if settings["test_debug"] > 0:
 if settings["test_kill_switch"] <= 0:
 break
 else:
 settings["test_kill_switch"] -= 1

 settings["lock"].acquire()
 print("TESTING-{0}: "
 "Entering iteration {1} of {2} on this row:".format(
 settings["process_num"],
 settings["rcount_this"], settings["rcount_total"]))
 print(row)
 settings["lock"].release()

 # Process row

McKenny 66 of 72

 process_row(row, settings)
 # ---#------#
 # End process_range

def process_row(row, settings):
 # Process row. Save any output to individual file.

 try:
if 1 == 1: # TESTING: Skip 'try:'
 # Create temp file subdirectory and path string
 drain_processed = 0 # Success (1); Existing (0); Failure (-1)
 if (row[settings["cur_fields"].index("Drain")] == 2):
 drain_output_type = 2
 tmp_data_path = settings["tmp_data_template"].format(
 settings["tmp_dhole_gdb"], "dhole",
 row[settings["cur_fields"].index("OID@")])
 else:
 drain_output_type = 1
 tmp_data_path = settings["tmp_data_template"].format(
 settings["tmp_dpath_gdb"], "dpath",
 row[settings["cur_fields"].index("OID@")])

 # Skip row if output already exists.
 if arcpy.Exists(tmp_data_path):
 return

 # NOTES: (1) Create drain_scells mask
 # Extract topo_dem cells within this sink mask
 sink_topo = arcpy.sa.ExtractByMask(
 settings["topo_dem"], row[settings["cur_fields"].index("SHAPE@")])
 # DEVELOPMENT: 2015.11.01 (v8). The above "ExtractByMask()" call is
 # the center of a persistent error in multiprocessing, on two lines:
 # "FATAL ERROR (INFADI)" "MISSING DIRECTORY"
 # The affected process may also raise an error that a file already
 # exists, similar to this "<user>\appdata\local\temp\t_t03", but
 # this may be after and an effect of the original problem.
 # UPDATE: Setting the scratch workspace to a FGDB sees this error.
 # Setting the scratch workspace to a folder seemingly works.

 # TESTING: Save sink_topo to hard drive as 00_sink_topo
 if settings["test_debug"] > 1:
 settings["lock"].acquire()
 print("TESTING-{0}: Exporting sink_topo as 00_sink_topo.".format(
 settings["process_num"]))
 settings["lock"].release()
 sink_topo.save(settings["test_name_base"] + "00_sink_topo")

 # Calculate maximum drain source elevation
 drain_smax = float(row[settings["cur_fields"].index("ElevMin")]) \
 + settings["v_accuracy"]

 # Extract drain_scells_big, mask of sink_topo cells <= drain_smax
 drain_scells_big = arcpy.sa.Con(sink_topo <= drain_smax, 1)

 # Create drain_scells. Trim drain_scells_big; extent matches sink_topo.
 # NB: No, I never did find a less stupid way to do this.
 drain_scratch6 = "{0}\\Scratch6_{1}".format(
 arcpy.env.workspace,
 row[settings["cur_fields"].index("OID@")])
 arcpy.RasterToPolygon_conversion(drain_scells_big, drain_scratch6,
 "NO_SIMPLIFY", "Value")

McKenny 67 of 72

 arcpy.env.extent = arcpy.Describe(drain_scratch6).extent
 arcpy.Delete_management(drain_scratch6)
 drain_scells = arcpy.sa.Con(drain_scells_big, drain_scells_big)

 # TESTING: Save drain_scells to hard drive as 01_drain_scells
 if settings["test_debug"] > 1:
 settings["lock"].acquire()
 print("TESTING-{0}: "
 "Exporting drain_scells as 01_drain_scells.".format(
 settings["process_num"]))
 settings["lock"].release()
 drain_scells.save(settings["test_name_base"] + "01_drain_scells")

 # OUTPUT: For internal drains, save drain_scells and continue.
 if drain_output_type == 2:
 if settings["test_debug"] == 0:
 drain_scells.save(tmp_data_path) # OUTPUT
 else:
 settings["lock"].acquire()
 print("TESTING-{0}: rain_scells format = '{1}'.".format(
 settings["process_num"], drain_scells.format))
 settings["lock"].release()
 return

 # NOTES: (2) Create drain_cost, the cost surface
 arcpy.env.extent = arcpy.Extent(
 drain_scells.extent.XMin - settings["d_limit_grid"],
 drain_scells.extent.YMin - settings["d_limit_grid"],
 drain_scells.extent.XMax + settings["d_limit_grid"],
 drain_scells.extent.YMax + settings["d_limit_grid"])
 drain_cost = arcpy.sa.Con(settings["topo_dem"], 1)

 # TESTING: Save drain_cost to hard drive as 02_drain_cost
 if settings["test_debug"] > 1:
 settings["lock"].acquire()
 print("TESTING-{0}: Exporting drain_cost as 02_drain_cost.".format(
 settings["process_num"]))
 settings["lock"].release()
 drain_cost.save(settings["test_name_base"] + "02_drain_cost")

 # NOTES: (3) Create drain_dcells mask
 arcpy.env.extent = drain_cost
 drain_dcells = arcpy.sa.Con(
 (arcpy.sa.IsNull(sink_topo)) & \
 (arcpy.Raster(settings["topo_dem"]) <= drain_smax), drain_cost)

 # TESTING: Save drain_dcells to hard drive as 03_drain_dcells
 if settings["test_debug"] > 1:
 settings["lock"].acquire()
 print("TESTING-{0}: "
 "Exporting drain_dcells as 03_drain_dcells.".format(
 settings["process_num"]))
 settings["lock"].release()
 drain_dcells.save(settings["test_name_base"] + "03_drain_dcells")

 # NOTES: (4) Create drain_elev, a drain path with lowered elevation
 drain_backlink = "{0}\\drain_backlink_{1}".format(
 arcpy.env.workspace,
 row[settings["cur_fields"].index("OID@")])

McKenny 68 of 72

 drain_distance = arcpy.sa.CostDistance(
 drain_scells, drain_cost, settings["d_limit"], drain_backlink)
 drain_lcpath_big = arcpy.sa.CostPath(
 drain_dcells, drain_distance, drain_backlink, "EACH_ZONE", "Value")
 arcpy.Delete_management(drain_backlink)

 # Create drain_lcpath. Extent of drain_lcpath_big == drain_cost; trim.
 # NB: Again, I never did find a less stupid way to do this.
 drain_scratch7 = "{0}\\Scratch7_{1}".format(
 arcpy.env.workspace,
 row[settings["cur_fields"].index("OID@")])
 arcpy.RasterToPolygon_conversion(drain_lcpath_big, drain_scratch7,
 "NO_SIMPLIFY", "Value")
 arcpy.env.extent = arcpy.Describe(drain_scratch7).extent
 drain_lcpath = arcpy.sa.Con(drain_lcpath_big, drain_lcpath_big)
 arcpy.Delete_management(drain_scratch7)

 # Create drain_elev w/ min elevation of sink and along drain_lcpath
 drain_scratch8 = arcpy.sa.ExtractByMask(settings["topo_dem"],
 drain_lcpath)
 drain_emin = row[settings["cur_fields"].index("ElevMin")]
 if (drain_scratch8.minimum < drain_emin):
 drain_emin = drain_scratch8.minimum
 drain_elev = arcpy.sa.Con(drain_lcpath, drain_emin)

 # If drain_elev is blank, raise Exception and skip
 if (arcpy.GetRasterProperties_management(
 drain_elev, "ALLNODATA").getOutput(0) == "1"):
 raise Exception

 # TESTING: Save drain_distance to hard drive as 04_drain_distance
 if settings["test_debug"] > 1:
 settings["lock"].acquire()
 print("TESTING-{0}: "
 "Exporting drain_distance as 04_drain_dist.".format(
 settings["process_num"]))
 settings["lock"].release()
 drain_distance.save(settings["test_name_base"] + "04_drain_dist")

 # TESTING: Save drain_lcpath to hard drive as 05_drain_lcpath
 if settings["test_debug"] > 1:
 settings["lock"].acquire()
 print("TESTING-{0}: "
 "Exporting drain_lcpath as 05_drain_lcpath.".format(
 settings["process_num"]))
 settings["lock"].release()
 drain_lcpath.save(settings["test_name_base"] + "05_drain_lcpath")

 # TESTING: Save drain_elev to hard drive as 06_drain_elev
 if settings["test_debug"] > 1:
 settings["lock"].acquire()
 print("TESTING-{0}: Exporting drain_elev as 06_drain_elev.".format(
 settings["process_num"]))
 settings["lock"].release()
 drain_elev.save(settings["test_name_base"] + "06_drain_elev")

 # OUTPUT: For internal drains, save drain_elev and continue.
 arcpy.env.extent = None
 if settings["test_debug"] == 0:
 drain_elev.save(tmp_data_path) # OUTPUT
 drain_processed = 1

McKenny 69 of 72

 except:
else: # TESTING: Skip 'except:'
 # Mark row as undrained.
 drain_processed = -1

 finally:
if 1 == 1: # TESTING: Skip 'finally:'
 arcpy.env.extent = None

 if drain_processed == 1:
 # Print progress message
 print_progress(settings["process_num"], settings["lock"],
 row[settings["cur_fields"].index("OID@")],
 settings["rcount_this"], settings["rcount_total"],
 settings["tprocess_start"], settings["tloop_start"],
 time.time())
 elif drain_processed == 0:
 # Print "already processed" message
 settings["lock"].acquire()
 print("SKIPPING-{0}: "
 "({1}) Drain path already found for row {2}.".format(
 settings["process_num"], drain_processed,
 row[settings["cur_fields"].index("OID@")]))
 settings["lock"].release()
 else:
 # Record row number (OBJECTID) and drain type (Drain)
 f = open(settings["tmp_errors_file"], "a")
 f.write("{0}\t{1}\n".format(
 row[settings["cur_fields"].index("OID@")],
 row[settings["cur_fields"].index("Drain")]))
 f.close()

 # Print warning message
 settings["lock"].acquire()
 print("WARNING-{0}: "
 "({1}) Drain path not found for row {2}.".format(
 settings["process_num"], drain_processed,
 row[settings["cur_fields"].index("OID@")]))
 settings["lock"].release()
 # End process_row

def print_progress(process_num, process_lock, row_ID, rcount_this,
 rcount_total, tprocess_start, tloop_start, tloop_end):
 # Print progress after each sink is processed.

 rcount_percent = rcount_this / float(rcount_total) * 100
 tloop_elapsed = tloop_end - tloop_start
 tprocess_elapsed = tloop_end - tprocess_start
 tprocess_remain = (tprocess_elapsed / rcount_this) * \
 (rcount_total - rcount_this)
 tprocess_elapsed_str = "{0:0.0f}d {1:02.0f}h {2:02.0f}m {3:05.2f}s".format(
 tprocess_elapsed // 86400, (tprocess_elapsed % 86400) // 3600,
 (tprocess_elapsed % 3600) // 60, tprocess_elapsed % 60)
 tprocess_remain_str = "{0:0.0f}d {1:02.0f}h {2:02.0f}m {3:05.2f}s".format(
 tprocess_remain // 86400, (tprocess_remain % 86400) // 3600,
 (tprocess_remain % 3600) // 60, tprocess_remain % 60)

 tloop_msg = ("PROCESSED-{0}: Row {1} in {2:0.2f}s. "
 "{3:6.2f}% complete ({4} of {5}). "
 "{6} elapsed; roughly {7} left.")

McKenny 70 of 72

 process_lock.acquire()
 print(tloop_msg.format(process_num, row_ID, tloop_elapsed,
 rcount_percent, rcount_this, rcount_total,
 tprocess_elapsed_str, tprocess_remain_str))
 process_lock.release()
 # End print_progress

---#------#

if __name__ == '__main__':
 main()

---#------#

McKenny 71 of 72

Works Cited and Referenced

Anderson, Danny L. "Detailed Hydrographic Feature Extraction from High-Resolution LIDAR
Data." ProQuest, UMI Dissertations Publishing, 2012. Web. Accessed 2014-10-10. <
http://search.proquest.com.ezaccess.libraries.psu.edu/docview/1017732181?pq-
origsite=summon >

ASPRS. Manual of Airborne Topographic Lidar. Ed. Michael S. Renslow. Bethesda, MD:
American Society for Photogrammetry and Remote Sensing, 2012. Print.

Dewberry. FEMA LiDAR: Middle Counties. USGS, 2012. Lidar dataset. Accessed 2014-07-14.
Retrieved from Virginia Lidar < http://www.virginialidar.com >

Dewberry. Project Report for the Middle Counties Acquisition and Classification for FEMA VA
LiDAR. Dewberry, 2012. PDF document. Updated 2012-08-31. Accessed 2014-07-23. <
https://54ede8be3c8882517d1439d2ac5a1ec7a3b5e801.googledrive.com/host/0B_5XlZJJ
2R5tUGtOY3dtR3I0NGs/Metadata/Project_Report/Dewberry_ProjectReport_MiddleCou
nties.pdf >

Merriam-Webster. "Lidar." Merriam-Webster.com. Merriam-Webster, n.d. Web. 5 Dec. 2014. <
http://www.merriam-webster.com/dictionary/lidar >

NOAA. United States Interagency Elevation Inventory. National Oceanic and Atmospheric
Administration. Web. Accessed 2014-11-26. < http://coast.noaa.gov/inventory/ >

Poppenga, S. K., D. B. Gesch, and B. B. Worstell. "Hydrography Change Detection: The
Usefulness of Surface Channels Derived from Lidar DEMs for Updating Mapped
Hydrography" Journal of the American Water Resources Association 49.2 (2013): 371-
89. ProQuest. Web. Accessed 2014-09-25. <
http://search.proquest.com.ezaccess.libraries.psu.edu/docview/1463114804?pq-
origsite=summon >

Poppenga, S.K., B.B. Worstell, J.M. Stoker, and S.K. Greenlee. "Using Selective Drainage
Methods to Extract Continuous Surface Flow From 1-Meter Lidar-Derived Digital
Elevation Data". U.S. Geological Survey Scientific Investigations Report 2010-5059, 12
pp. Accessed 2014-10-11. < http://pubs.er.usgs.gov/publication/ofr20105059 >

United States Geological Survey. Hydrography: National Hydrography Dataset, Watershed
Boundary Dataset. USGS, n.d. Web. Updated 2013-01-13 11:16:15 EST. Accessed 2014-
09-14. < http://nhd.usgs.gov/ >

United States Geological Survey. The National Hydrography Dataset (NHD) Model (v2.2).
USGS, 2014-06-27. PDF. Accessed 2014-09-14. <
http://nhd.usgs.gov/NHDv2.2_poster_062614.pdf >

United States Geological Survey. NHD User Guide. USGS, n.d. Web. Updated 2013-01-14
17:16:05 EST. Assessed 2014-09-14. < http://nhd.usgs.gov/userguide.html >

United States Geological Survey. “NHD Frequently Asked Questions.” Hydrography: National
Hydrography Dataset, Watershed Boundary Dataset. USGS, 2011-02-01. Web. Updated
2013-02-14 11:16:15 EST. Accessed 2014-09-20. < http://nhd.usgs.gov/nhd_faq.html >

United States Geological Survey. “NHD Tools.” Hydrography: National Hydrography Dataset,
Watershed Boundary Dataset. USGS. Web. Updated 2014-12-04 16:11:18 EST.

http://nhd.usgs.gov/nhd_faq.html
http://nhd.usgs.gov/userguide.html
http://nhd.usgs.gov/NHDv2.2_poster_062614.pdf
http://nhd.usgs.gov/
http://pubs.er.usgs.gov/publication/ofr20105059
http://search.proquest.com.ezaccess.libraries.psu.edu/docview/1463114804?pq-origsite=summon
http://search.proquest.com.ezaccess.libraries.psu.edu/docview/1463114804?pq-origsite=summon
http://coast.noaa.gov/inventory/
http://www.merriam-webster.com/dictionary/lidar
https://54ede8be3c8882517d1439d2ac5a1ec7a3b5e801.googledrive.com/host/0B_5XlZJJ2R5tUGtOY3dtR3I0NGs/Metadata/Project_Report/Dewberry_ProjectReport_MiddleCounties.pdf
https://54ede8be3c8882517d1439d2ac5a1ec7a3b5e801.googledrive.com/host/0B_5XlZJJ2R5tUGtOY3dtR3I0NGs/Metadata/Project_Report/Dewberry_ProjectReport_MiddleCounties.pdf
https://54ede8be3c8882517d1439d2ac5a1ec7a3b5e801.googledrive.com/host/0B_5XlZJJ2R5tUGtOY3dtR3I0NGs/Metadata/Project_Report/Dewberry_ProjectReport_MiddleCounties.pdf
http://www.virginialidar.com/
http://search.proquest.com.ezaccess.libraries.psu.edu/docview/1017732181?pq-origsite=summon
http://search.proquest.com.ezaccess.libraries.psu.edu/docview/1017732181?pq-origsite=summon

McKenny 72 of 72

Accessed 2014-12-07. < http://nhd.usgs.gov/tools.html >

United States Geological Survey. "National Elevation Dataset - NED Frequently Asked
Questions (FAQ) - U.S. Geological Survey" National Elevation Dataset. USGS, 2014-
10-06. Web. Accessed 2014-11-21. < http://ned.usgs.gov/faq.html >

United States Geological Survey. “NHDH_VA.gdb\Hydrography\NHDFlowline” National
Hydrography Dataset (Virginia State Extract). USGS, n.d. ESRI File Geodatabase.
Updated 2014-08-27. Accessed 2014-09-14.

Virginia Geographic Information Network "VBMP Orthophotography" Virginia Geographic
Information Network. Virginia Information Technologies Agency, Commonwealth of
Virginia, n.d. Web. Accessed 2014-12-07. <
http://www.vita.virginia.gov/isp/default.aspx?id=8412 >

Virginia Geographic Information Network. 2007 Imagery Dataset for Prince George County.
2006/2007 VBMP Orthoimagery. Virginia Geographic Information Network (VGIN),
Richmond, Virginia, 2007-02. Orthoimagery dataset.

Virginia Geographic Information Network. 2013 Imagery Dataset for Prince George County.
2013/2016 VBMP Orthoimagery. Virginia Geographic Information Network (VGIN),
Richmond, Virginia, 2013-10-31. Orthoimagery dataset.

Virginia Lidar. n.p., 2014. Website. Updated 2014-06-30. Accessed 2014-07-14. <
http://www.virginialidar.com >

Wikipedia. "National Lidar Dataset (United States)" Wikipedia. Web. Updated 2014-11-04
05:59. Accessed 2014-11-26. <
http://en.wikipedia.org/wiki/National_Lidar_Dataset_(United_States) >

County of Prince George, Virginia. "Geographic Information System" Prince George County,
Virginia. Prince George County, Virginia, n.d. Web. Accessed 2014-12-15. <
http://princegeorgecountyva.gov/Index.aspx?page=160 >

http://princegeorgecountyva.gov/Index.aspx?page=160
http://en.wikipedia.org/wiki/National_Lidar_Dataset_(United_States)
http://www.virginialidar.com/
http://www.vita.virginia.gov/isp/default.aspx?id=8412
http://ned.usgs.gov/faq.html
http://nhd.usgs.gov/tools.html

	Overview
	Value and Potential Applications
	Research Approach Overview
	Individual Research and Production Steps:
	Step 1: Identify Sources of Public GIS Data
	Step 2: Generate a New Hydrographic Flow Network
	Step 3: Apply Attributes to the Features of the Generated Network
	Step 3a: Apply Smoothing to Stream Polylines Using Lines and Arcs
	Step 4: Evaluate Results for Accuracy and Visual Appeal
	Step 5: Document Process Guide using Free, Open Source Tools

	Implementation Retrospective
	Output Analysis
	Conclusion
	Appendix A: The Incomplete Guide
	Introduction
	Format
	Disclaimers
	Hardware and Software Requirements
	Process Overview
	Job 1: Collect Data
	Task 1.1: NHD Stream Network
	Task 1.2: Elevation Data and Waterbody Delineations
	Task 1.3: Aerial Orthoimagery

	Job 2: Prepare and Organize Data and Environment
	Task 2.1: Install Software Tools
	Task 2.2: Determine Project Values
	Task 2.3: Set-up Work Environment
	Task 2.4: Lidar-Based DEM
	Step 2.4.1: Create Mosaic Dataset
	Step 2.4.2: Populate Mosaic Dataset
	Step 2.4.3: Export Mosaic to Single Raster Dataset

	Task 2.5: NHD NHDFlowline class
	Step 2.5.1: Select NHD Lines
	Step 2.5.2: Extract Selected NHD Lines

	Task 2.6: Reference Data
	Step 2.6.1: Create an Orthoimagery Mosaic
	Step 2.6.2: Import Waterbody and Other Reference Data

	Job 3: Create Hydrologically-Enforced DEM
	Task 3.1: [If Needed] Remove Tidal Sinks
	Step 3.1.1: [If Needed] Extract Tidal Waterbodies
	Step 3.1.2: Lower Tidal Waters to Slightly Below Low Tide

	Task 3.2: Create Raster of Sink Depths
	Step 3.2.1: Create a Hydrologically-Conditioned DEM
	Step 3.2.2: Find Difference Between DEMs

	Task 3.3: Create Sink Map (using Region Group)
	Step 3.3.1: Create Single Zone Raster of Non-Zero Cell Differences
	Step 3.3.2: Split Single Zone into Contiguous Sinks
	Step 3.3.3: Clean-up

	Task 3.4: [Alternate] Create Sink Map (using Sink Tool)
	Step 3.4.1: Create Artificially Lower Filled Sinks
	Step 3.4.2: Create Flow Direction Raster
	Step 3.4.3: Identify Sinks
	Step 3.4.4: Clean-up

	Task 3.5: Create Raster Attribute Fields
	Step 3.5.1: Create Field to Store Sink Type Classifications
	Step 3.5.2: Create Additional Sink Attribute Fields

	Task 3.6: [If Needed] Process Sink Map In Chunks
	Step 3.6.1: Split Sink Map
	Step 3.6.2: Merge Sink Map Chunks

	Task 3.7: Create Sink Statistics Temporary Tables
	Step 3.7.1: Get Sink Minimum Elevations
	Step 3.7.2: Get Sink Spill Elevations
	Step 3.7.3: Get Sink Mean and Maximum Depths

	Task 3.8: Copy Statistics from Temporary Tables
	Step 3.8.1: Define Inner Join
	Step 3.8.2: Copy Values
	Step 3.8.3: Clean-up

	Task 3.9: Classify Sinks: Minor by Attribute
	Step 3.9.1: Classify Minor Sinks To Be Filled

	Task 3.10: Classify Sinks: Waterbodies by Overlap
	Step 3.10.1: Identify Sinks with Waterbodies
	Step 3.10.2: Limit Sink Map Identified Sinks
	Step 3.10.3: Classify Identified Sinks
	Step 3.10.4: Clean-Up

	Task 3.11: Manually Classify Undrainable Sinks
	Step 3.11.1: Extract Very Low Elevation Sinks
	Step 3.11.2: Create Polygon Class for Manual Classifications
	Step 3.11.3: Merge Split Sinks in Manual Check Class
	Step 3.11.4: Restore Raster Attributes to Manual Check Class
	Step 3.11.5: Symbolize Manual Check Class
	Step 3.11.6: Classify Identified Sinks
	Step 3.11.7: Delineate Additional Sinks
	Step 3.11.8: Apply Classifications Back To Sink Map

	Task 3.12: Remove To-Be-Filled Sinks and Update Sink Map
	Step 3.12.1: Create Map Of Sinks To Be Filled
	Step 3.12.2: Create Map Of Sinks To Be Drained
	Step 3.12.3: Create Raster Of Cells To Be Filled
	Step 3.12.4: Create Terrain With To-Be-Filled Sinks Removed
	Step 3.12.5: Rebuild Raster Attribute Table
	Step 3.12.6: Repopulate Raster Attribute Table

	Task 3.13: Generate Sink Drain Data
	Step 3.13.1: Run "DrainSink.py" Python Script
	Step 3.13.2: Address Undrained Sinks
	Step 3.13.3: Apply Drains To Terrain Surface
	Step 3.13.4: Clean-up Script Scratch Data

	Task 3.14: Repeat Job

	Job 4: Generate Stream Network
	Job 5: Classify Stream Network By Terrain
	Job 6: Simplify Stream Network
	Job 7: Populate Stream Network With NHD Attributes

	Closing Comments

	Appendix B: DrainSink.py

	Text Box 1:
	Text Box 1_2:
	Text Box 1_3:
	Text Box 1_4:
	Text Box 1_5:
	Text Box 1_6:
	Text Box 1_7:
	Text Box 1_8:
	Text Box 1_9:
	Text Box 1_10:
	Text Box 1_11:
	Text Box 1_12:
	Text Box 1_13:
	Text Box 1_14:
	Text Box 1_15:
	Text Box 1_16:

