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Abstract 

Coastal wetland managers face difficulties monitoring shrub mangroves at large scales using 
traditional remote sensing methods employed in forest stock monitoring due to the low stature 
of the vegetation and the dense nature of its canopy structure. The goal of this project is to 
assess the qualitative accuracy of ground filtering algorithms applied at varying scales to model 
shrub mangrove canopies using dense lidar point clouds and object-based feature extraction 
methods. High-resolution imagery and dense lidar point cloud data sets were used to delineate 
and extract mangrove and waterbody features as shapefile layers using Object-Based Image 
Analysis (OBIA) rule sets in eCognition. Three separate object scales were used to classify three 
differing outputs for mangroves areas (Scale of 3, 5, and 10 in eCognition). These layers are 
later used to classify mangrove points for volumetric extraction within LP360. Ground filtering 
algorithms were applied to the unclassified point data at 5-meter, 10-meter, and 20-meter 
filtering grids for the purpose of deriving ground surface models. The three imported mangrove 
feature shapefiles are then used to assign the remaining mangrove surface points to a unique 
mangrove class for each ground model. Canopy Height Models (CHM) were produced by 
generating Normalized Digital Surface Models (nDSM) within mangrove areas, for a total of 9 
different ground filtering and object scale combinations. Volumetric differencing was then used 
to determine how much Above-Ground Biomass (AGB) is lost or "gained" due to interpolation 
approximations reported in percentage values and volumetric units (cubic meters) by 
comparing subsequent CHMs to a baseline CHM (the model with best resolution). By applying 
the workflow designed in this project to coastal wetland monitoring projects, wetland 
managers may be able to better observe carbon sequestration and ecological improvements in 
mangrove habitats at appropriate scales over long periods of time. 

 

  



Introduction 

Mangroves are a species of wetland vegetation receiving more attention by climate scientists and 

coastal conservation groups lately as their contributions to the global climate budget and coastal 

ecology draw increasingly scrutiny (Kauffman, et al., 2014, Kauffman, et al., 2012, Lagomasino, et al., 

2016, Luna, et al., 2017, Maeda, et al., 2016). Mangroves exist at the littoral interface between ocean 

and land and play a pivotal role in coastal ecology. Mangroves sequester large amounts of carbon 

(Bouillon, et al., 2008, Fatoyinbo, 2010, Kauffman, et al., 2014, Kauffman, et al., 2012, Maeda, et al., 

2016, Mcleod, et al., 2011), establish breeding grounds for maritime species of birds and fish safe from 

predation, deposit sediment along coastlines, and help dissipate storm surge produced by tropical 

cyclones. Not all mangroves are created equal, and due to varying environmental factors found in the 

differing geographies of their global extent, there can often be large discrepancies in the areal extent 

and vegetative structure of mangroves found in the wild (Alsumaiti, 2014, Heenkenda, et al., 2015, 

Kauffman, et al., 2012, Son, et al., 2015, Wannasiri, et al., 2013). 

Scientists from a wide range of communities have a vested interest in monitoring mangroves at large 

scales due to their role in regulating the carbon budget and coastal ecology—climatologists, wetland 

ecologists, biogeochemists, etc. (Bouillon, et al., 2008, Fatoyinbo, 2010, Kauffman, et al., 2014, Luna, et 

al., 2017). These researchers often have a difficult time monitoring mangroves at large scale due to the 

inaccessible nature of certain wetlands, and aerial or space-borne imagery is often used to identify and 

delineate wetland areas that mangroves inhabit instead (Alatorre, et al., 2011, Fatoyinbo, 2010, 

Heenkenda, et al., 2014, Heenkenda, et al., 2015, Luna, et al., 2017, Myint, et al., 2008, Simard, et al., 

2006). While digitizing the areal and even volumetric extent of mangroves using modern remote sensing 

techniques to generate Canopy Height Models (CHMs) is relatively easy, accurately modeling shrub 

mangroves in coastal wetlands at large scale has been a difficult challenge for wetland scientists for 

decades due to their dense vegetative structure and their low stature in an inundated environment 

(Everitt, et al., 2008, Giri, eta l., 2011, Meng, et al., 2017, Osland, et al., 2014, Wannasiri, et al., 2013). 

Few studies have been conducted seeking better methods for developing Canopy Height Models (CHMs) 

of shrub mangroves in coastal environments for use in quantifying vegetative biomass using modern 

remote sensing methods like Object-Based Image Analysis (OBIA) or statistical point cloud filtering 

(Dronova, 2015, Everitt, J. H., et al., 2008, Fatoyinbo, 2010, Feliciano, 2015, Luna, et al., 2017, Meng, et 

al., 2017, Wannasiri, et al., 2013). Vegetative biomass quantification can be used to approximate the 

carbon sequestered by mangroves over a given area—which can then be subsequently factored into 

global carbon budget models, but accurate CHMs must first be produced to quantify these values 

(Boegh, Eva, et al., 2002, Feliciano, 2015, Kauffman, et al., 2012, Khosravipour, et al., 2014, Lagomasino, 

et al., 2016, Thapa, et al., 2015). 

Producing an accurate CHM is difficult because the vegetative canopy is so dense and thick that few lidar 

pulses can penetrate them using traditional airborne lidar altimetry and surface-differencing methods 

on the data-processing side (see Figure 1). Without good data collection capabilities, the generated 

model will not be resolute enough to characterize the above-ground biomass and relate it to overall 

vegetative structure and carbon sequestration rates (Heenkenda, et al., 2014, Heenkenda, et al., 2015, 

Kamal, et al., 2014, Karlson, et al., 2014, Kauffman, et al., 2014, Maeda, et al., 2016). A better 

methodology must be derived for remotely collecting and processing imagery and elevation data to 

accurately model shrub mangroves in coastal environments. 



 

Figure 1: Open ground points between mangrove plots (left); mangroves in profile (below) and overhead view (above) within 
the point cloud. 

Research Issues 

This project seeks to address several gaps in data processing and modeling workflows for monitoring 

shrub mangroves at large scales in coastal environments. These shortfalls are related to: 

A) The degree of accuracy with which researchers can extract coastal shrub mangroves from 

airborne imagery 

B) Generating an accurate Digital Elevation Model (DEM) for use in canopy modeling 

C) The ability to define degrees of accuracy in modeling scale parameters 

D) Large area monitoring 

Addressing the requirements with the best of contemporary data collection and processing software is 

not difficult, but defining the techniques used by that software will make or break the fidelity of the 

product model. The “solution” workflow needs to: 

1) Delineate and extract coastal shrub mangroves from airborne imagery accurately 

2) Produce a Canopy Height Model (CHM) from a statistically-approximated ground surface 

3) Define the degree of influence that scale plays in the image and point cloud classification 

4) Be “smooth” enough to approximate coastal shrub mangrove canopies at large scales 

The goal of this project is to develop a procedure that satisfies the aforementioned requirements and 

can be used to address the challenges of monitoring coastal shrub mangroves worldwide. 

 

Data Sources 

The primary data sources for the project were dense lidar tiles and corresponding NAIP imagery 

acquired from the USGS Earth Explorer portal. The lidar data needed to have a high enough 

point density to get several pulses to pass through the dense mangrove canopy, so this was the 

primary selecting criteria for the data set. A lidar survey that produced a sufficiently dense 



point cloud for the study area (~6 points / m2) was collected by Digital Aerial Solutions, LLC over 

the South Terrebonne Parish during leaf-off conditions in February of 2015 using an ALS-70-HP 

(see Table 1). A corresponding set of 4-band NAIP imagery (RGB+NIR) was acquired during leaf-

on conditions using a Leica ADS100 sensor with a Ground Sampling Distance (GSD) of 1 m (see 

Figure 2).  

 

 

Figure 2: The location of the study area along the Louisiana coastline (left) and the portion of the study area encompassed by 
lidar coverage (right).  

The combination of these data sets would be ideal because while the lidar point cloud was 

collected during leaf-off conditions—an optimum canopy structure for ground point collection, 

the imagery was collected during leaf-on conditions—an optimum canopy structure full of 

leaves for delineation using any band combination that incorporates the NIR channel for digital 

extraction. That the two data sets are very close in temporal period gives us the best snapshot 

we could get of both the bare ground surface and the full-bloom canopy for digital extraction 

and canopy modeling possible over the study area. 

 



Table 1: Key metadata from the NAIP and lidar data 

 

 

Methodology 

Three primary methods were applied to address the four requirements highlighted in the 

research issues section:  

1. Object-Based Image Analysis (OBIA) in Trimble eCognition 

2. Statistical ground filtering and surface generation in GeoCue LP360 

3. Surface differencing and volumetric estimation in ESRI ArcMap (ArcGIS) 

After the NAIP images and lidar tiles were pre-processed in ArcMap, they were imported into 

eCognition for initial planimetric (2D) feature extraction of the mangroves in the NAIP scene. 

OBIA can be succinctly described as an attempt to train an automation program to process a 

multispectral image overlaid on an elevation dataset the way that a human eye can through the 

use of threshold-based boundaries set across a family of spectral, radiometric, allometric, 

textural, relative, and topographical values manually by a specially-trained imagery analyst. The 

OBIA software (eCognition) cracks the image up into “objects” containing similar pixels and 

then classifies the objects via rule sets developed by the analyst (see Figure 3). The advantage 

to this practice is that a machine can process these data sets and extract and export a digitized 

polygon of the desired features much quicker and more accurately than a human can. 



 

Figure 3: Image segmentation vs original image (left); classified image vs original image (right). 

The nature of the study area makes the extraction of shrub mangroves a difficult task. Water, 

vegetation, bare earth, mangroves, and sea grass are all intertwined in a complex image for 

even the human eye to decipher at times. The nature of the mangroves themselves also make 

the elevation profile a difficult task to classify. Shrub mangroves are very low to the 

water/ground, and exist both in water and on land. Their root structure (pneumatophores) are 

often both submerged and exposed and their canopies are often rough, uneven, and dense in 

composition. 

The image classification process began with an initial Multi-Resolution Segmentation (MRS) to 

establish initial objects, followed by an initial classification into overarching categories (Water, 

Wetlands, Manmade, etc.). The NIR channel is weighted twice as heavily as the RGB channels in 

the initial object segmentation with a scale parameter of 50, a shape parameter of 0.8, and a 

compactness parameter of 0.5.  

The initial classification process is mostly spectral-based, making use of a family of indexes and 

values for the threshold-based classification, to include: Mean Normalized Difference Water 

Index (NDWI), Mean Normalized Vegetation Index (NDVI), Color Infrared (CIR) Ratio, Visible 

Brightness-to-Near Infrared Ratio (VBNIR), Green-Red Vegetation Index (GRVI), and Mean 

Brightness. Initial large-scale objects are used to avoid surface anomalies (ex: water reflection) 

at finer scales for initial classification. The initial objects are then segmented again using a much 

finer scale and the same classification values and indexes and then reclassified into new object 

classes (Mangroves, Water, Earth/Grass). 

Because scale is of interest to the assessment of this solution, the finer scale segmentation was 

done at three separate scale parameters: 3 (finest scale), 5 (moderate scale), 10 (large scale). 

Once polygon features are extracted from the OBIA process, all three scale-derived extractions 

were then exported to LP360 for use in the deriving 3-dimensional elevation surfaces (Canopy 



Height Models, or “CHMs”). The finest scale output was also exported to ArcMap for an 

accuracy assessment (see Figure 4). 

 

 

Figure 4: Overview of the object-based classification process in eCognition and ArcGIS. 

The surface derivation process in LP360 began with importing the lidar data and doing a bit of 

pre-processing to get everything in the correct projection. The 2D mangrove polygons from the 

OBIA feature extraction were also imported (Scale of 3 = S3, same for S5 and S10). The first 

surface derived was the ground surface or Digital Elevation Model (DEM). This model is difficult 

to derive over the mangrove-vegetated areas, which is what we are primarily interested in for 

producing a shrub mangrove Canopy Height Model (CHM). In order to approximate the ground 

surface below the mangrove canopy to an empirically-justifiable degree, high and low noise 

points were first filtered out via statistically-derived thresholds, then lowest points were 

established and added in iterative fashion until a sufficiently-dense surface was derived below 

the canopy. 

As scale is of interest to the assessment of this solution the statistical ground point filtering was 

done at varying scale windows to assess the degree that scale in the ground filtering process 

affects the CHM output compared to the degree that the scale of the OBIA process plays. 

Simple grids were used to define the iterative ground point filtering in a spatial metric using 5-

meter, 10-meter, and 20-meter grid windows for a total of 3 separate DEM outputs. The 

mangrove points were then classified using the 3-separate scale OBIA feature extraction 

outputs using the “Classify by Feature” (CBF) Point Cloud Task (PCT) in LP360. 

Once the ground points and the mangrove points were classified in each instance of scale 

combination (S3-3m, S3-5m, …S10-20m) the DEM and Digital Surface Model (DSM) were both 

exported to ArcMap. The DSM is the DEM combined with the surface features of interest, 



which in this case were just the mangrove canopy points. For the DSM generation, class 2 

(ground) and class 3 (shrub mangrove) were the only points included and Inverse-Distance 

Weighing (IDW) using a 1-meter output scale. For the DEM export the same process was 

followed with the exception of only including the class 2 (ground) points. Both DSM &DEM 

were exported in .img format (see Figure 5).  

 

 

Figure 5: Overview of the CHM extraction process in LP360 and ArcGIS. 

Once all 18 DEM/DSM .img files were imported into ArcMap, a simple surface volume 

differencing operation was done to normalize the resulting CHM, wherein the DEM was 

subtracted from the DSM to leave the shrub mangrove canopy behind with associated height 

values. Each DEM was subtracted from its corresponding DSM (ex: S3-5m DSM – S3-5m DEM) 

to derive 9 CHMs. Once all 9 CHMs were derived, the most well-defined data was used as the 

baseline model, and the remaining 8 CHMs were compared via volumetric surface differencing 

to assess the degree of influence that commissions and omissions induced at larger scales will 

play in the resultant CHMs. In this case, the S3-5m CHM was the most well-defined and was 

used as a reference baseline for the scale degree assessment (see Figure 6). 



 

Figure 6: In the surface differencing process the CHM is differenced from the baseline to visualize commission/omission 
errors and to quantify the difference in volume and areal extent. 

To assess the degree of influence that scales of OBIA objects and ground filtering grids play in the CHM 

output the 8 CHMs were differenced from the baseline CHM to produce an omission/commission 

(om/com) degree image with associated values for negative and positive elevation gains between 

surfaces. Eight om/com images were produced to visualize and quantify the degree of influence each 

scale factor plays in the CHM output. Finally, areal and volumetric calculations were made in 

ArcMap to quantify the AGB of the shrub mangrove CHMs. The outputs were compared to 

assess the degree of offset in the derived area and volume values. A diagram visualizing the 

entire workflow for the project in sequence can be viewed in Figure 7 below. 



 

Figure 7: A step-by-step graphic of the entire remote sensing and geospatial workflow, excludes initial image processing 
(projections, etc.). 

Results 

The first thing to assess was the accuracy of the OBIA image classification process, which 

produced an overall accuracy of 93.6%. For the classification of shrub mangroves, the OBIA 

feature extraction workflow that was developed in eCognition produced a user’s accuracy of 

95.0% and a producer’s accuracy of 93.44% (see Table 2). These results were deemed sufficient 

and the 2-D mangrove polygons were pushed into LP360 for the CHM extraction process.  

 

Table 2: Accuracy assessment results for the object-based image classification process. 

 



Following the CHM derivation and surface differencing operations, om/com images were 

produced to visualize the 3-dimensional offsets and highlight the degree of influence that scale 

plays in object segmentation and ground filtering. The om/com images produced revealed that 

there is substantially more degradation in the accuracy of the CHM output via opening up the 

areal extent of the ground filtering window. The results of the volumetric estimation can be 

viewed and compared in Table 3 below. Baseline comparison graphics are introduced in the 

following section. 

 

Table 3: Results of the above-ground biomass volume estimates and mangrove area. Baseline values are highlighted in red.  

 

 

Discussion 

The results of the baseline comparison indicate that there is substantially more accuracy 

degradation in the CHM via opening up the ground filtering window when compared to 

increasing the size of segmentation objects. These values are reflected in Table 3 but are 

visually evident when comparing the data layers visually, particularly when comparing om/com 

layers to the baseline CHM with a hillshade applied (see Figures 8-11). It is also possible to 

visually witness the difference in area and volume between the baseline CHM and other 

derivative CHMs.  



 

Figure 8: A subset of the original image (upper left); the baseline CHM with hillshade applied (lower left); the om/com image 
(upper right); the S3 10x5 CHM (lower right).  

 

Figure 9: A subset of the original image (upper left); the baseline CHM with hillshade applied (lower left); the om/com image 
(upper right); the S5 10x5 CHM (lower right). 



 

Figure 10: A subset of the original image (upper left); the baseline CHM with hillshade applied (lower left); the om/com 
image (upper right); the S10 10x5 CHM (lower right). 

 

Conclusion 

The goals of this project were to develop techniques capable of extracting coastal shrub 

mangroves from airborne imagery accurately, generate a CHM from a statistically-

approximated ground surface, define the degree of influence that scale plays in the OBIA and 

ground filtering processes, and be capable of processing large areas across the Gulf Coast 

region.  The results indicated that: 

1. The methods developed successfully extracted shrub mangroves 

2. Scales of ground filtering are more significant than scales of object size 

3. These methods can be used to improve the study of global carbon budget estimates for 

coastal environments 

Wetland researchers and global biogeochemists are encouraged to apply these remote sensing 

and geospatial methods to their modeling efforts in estimating CO2 sequestration and tracking 

global mangrove decline in the Gulf Coast and similar environments abroad.   
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