A GEOBIA Approach to Locating and Assessing HWA Affected Eastern Hemlock Trees

Shenandoah National Park, Virginia

Jonathan Mikolin Advisor: Dr. J.B. Sharma Penn State GEOG 596A 12/10/2021

Overview

- Background
 - Hemlock Woolly Adelgid and Eastern Hemlock Trees
 - Shenandoah National Park
- Goals and Objectives
- > Methodology
 - Necessary Data
 - General Workflow
 - Pilot Project Example
- ➤ Timeline
- > Anticipated R esults

Background

Hemlock woolly adelgid (HWA), a non-native invasive insect.

- Originated from Asia
 - Identified in 1950s within Eastern United States
- Feeds on eastern hemlock and Carolina hemlock trees causing damage
 - Tree crown decline. Substantial needle loss.
 - R estricts water flow throughout plant system.
 - Mortality

Importance of hemlocks

R egarded as a foundational vegetation species.

• Influences forest structure and the surrounding ecosystem

Examples include

- Cover & food for whitetail deer and various bird species such as warblers
- Act as temperature regulators for streams
 - Vital for native trout species

Region of Interest

Shenandoah National Park, Virginia

Shenandoah National Park (SHEN) is approximately 200,000 acres in size.

HWA discovered in 1988

• Substantial decreases in hemlock stand health observed afterwards

Management techniques were initiated since the discovery of this pest.

- 1. Monitoring efforts
- 2. Control techniques
 - Chemically through soil injections.
 - Biologically through releases of natural predators of HWA.

Firsthand experience indicates a need for a rapid assessment and identification tool.

- Field work is resource intensive.
 - Extensive time is needed to locate trees, assess their health, and treat them.

Goals and Objectives

Project Goals

To determine if a geographic object-based image analysis (GEOBIA) workflow can be utilized to identify and assess hemlock trees in a portion of SHEN from remotely sensed data.

Primary Objectives

- 1. Determine how accurately hemlocks trees can be located.
- 2. Create a health assessment of trees over time (2009 to 2018) through normalized difference vegetation index (NDVI) values.

Project Study Area Author: Jonathan Mikolir Study Area 1.25 2.5 Kilometers

Selected due to large amount of ground truth information available and personal knowledge of area. Project Study Area

Size: 6 x 3km (6,300 Acres)

Selected due to large amount of ground truth information available and personal knowledge of area.

Hemlock Waypoints

- Act as ground truth information.
 - > Vital for accuracy assessment
- Sourced from SHEN.
- Collected by Garmin GPS Units.
 - Average accuracy 4-meter
- Collection dates range from 2008 to 2021.

Digital Orthoimagery

- Primary imagery for analysis.
 - Sourced from the Virginia Geographic Information Network.
 - > Collected in 2009 and 2018.
- Spatial resolution 0.3-meter in 8-bit format.
- Spectral resolution includes 4-image bands
 - > R ed/ Green/ Blue and Near Infrared

2009; Displayed in color infrared (412 band combination)

Lidar Point Cloud

• Key for deriving elevation products

- 1. Digital elevation model
- 2. Normalized digital surface model
- 3. Normalized digital terrain model
- Sourced from the Virginia Geographic Information Network
 - > Collected from 1/2014 to 5/2014
- Nominal point spacing of 0.6-meter

2014; Lidar point cloud example

Digital Elevation Model

- Raster generated from all ground classified lidar points.
- Depicts bare earth surface.
- Useful for examining elevation of an area of interest, along with the structure of the earth's surface.

Digital elevation model example. Units in meters.

Normalized Digital Surface Model

- R aster generated from first return lidar pulses, regardless of classification (noise filtered out).
- Depicts height of features above ground once normalized from DEM.
- Useful for examining forest structure and identifying features of interest.

Normalized digital surface model example. Units in meters.

Normalized Digital Surface Model

- R aster generated from first return lidar pulses, regardless of classification (noise filtered out).
- Depicts height of features above ground once normalized from DEM.
- Useful for examining forest structure and identifying features of interest.

Normalized digital surface model example. Units in meters.

Normalized Digital Terrain Model

- Generated from last return, regardless of classification (noise filtered out).
- Depicts lower portions of features with height.
 - Especially useful for hemlocks, captures lower section of tree canopy.

Normalized digital terrain model example. Units in meters.

Methodology

Software

ArcGIS Pro

- Preprocessing
- Results

eCognition Developer

- GEOBIA
 - Segmentation
 - Classification
 - Export

Methodology

2013 Ruleset

🖥 ኃ ୯ 📚 🗟

Ortho_2013

Process Tree

- Segmentation
 - 🔜 delete '<all levels>'
 - duadtree: 55 creating 'New Level'
 - at New Level: multi-resolution: 25 [shape:0.1 compct.:0.9]
- Classification
 - (at New Level: remove classification
 - unclassified with Mean NDVI > 0.17 and GLCM Contrast NIR (all dir.) < 2000 and Mean nDSM > 0 and Mean nDSM < 45 at New Level: Mixed Hemlock</p>
 unclassified with Mean NDVI <= 0.17 and Mean NDVI > -0.5 and GLCM Contrast NIR (all dir.) > 1500 and Mean nDSM > 0 at New Level: Other Vegetation
 unclassified at New Level: NonVegetation_Shadows
 - 1 NonVegetation_Shadows at New Level: merge region
 - 📆 Other Vegetation at New Level: merge region
 - Mixed Hemlock with Number of pixels < 200 at New Level: merge region
- Export
 - 💢 Mixed Hemlock, NonVegetation_Shadows, Other Vegetation at New Level: export object shapes to Ortho2013_FINAL
 - Mixed Hemlock at New Level: export object shapes to Ortho2013_ClassifiedHemlockPoints

2013 Ruleset

🖥 ኃ ୯ 🗣 🗟

🖃 🔲 Ortho_2013

ocess Tre

- 🖃 🔳 Segmentation
 - 🔚 delete '<all levels>'
 - 📲 quadtree: 55 creating 'New Level'
 - at New Level: multi-resolution: 25 [shape:0.1 compct.:0.9]
- Classification
 - at New Level: remove classification
 - Unclassified with Mean NDVI > 0.17 and GLCM Contrast NIR (all dir.) < 2000 and Mean nDSM > 0 and Mean nDSM < 45 at New Level: Mixed Hemlock Unclassified with Mean NDVI <= 0.17 and Mean NDVI > -0.5 and GLCM Contrast NIR (all dir.) > 1500 and Mean nDSM > 0 at New Level: Other Vegetatio Unclassified at New Level: NonVegetation_Shadows
 - nonVegetation_Shadows at New Level: merge region
 - 📆 Other Vegetation at New Level: merge region
 - I Mixed Hemlock with Number of pixels < 200 at New Level: merge region
- 🖃 🔳 Export
 - 🗔 Mixed Hemlock, NonVegetation_Shadows, Other Vegetation at New Level: export object shapes to Ortho2013_FINAL
 - Kixed Hemlock at New Level: export object shapes to Ortho2013_ClassifiedHemlockPoints

ocess Tre

2013 Ruleset

50 Ortho_2013 🖃 🔳 Segmentation delete '<all levels>' duadtree: 55 creating 'New Level' at New Level: multi-resolution: 25 [shape:0.1 compct.:0.9] Classification (at New Level: remove classification unclassified with Mean NDVI > 0.17 and GLCM Contrast NIR unclassified with Mean NDVI <= 0.17 and Mean NDVI > -0.5 1 NonVegetation_Shadows at New Level: merge region 📆 Other Vegetation at New Level: merge region Mixed Hemlock with Number of pixels < 200 at New Level: 🖃 🔳 Export 🗔 Mixed Hemlock, NonVegetation_Shadows, Other Vegetation A Mixed Hemlock at New Level: export object shapes to Ortho

Image Object Information						
Feature	Value					
Object features						
Image layer	Mean					
Blue	97.6173913					
Green	91.1416149					
nDSM	35.6885296					
NDVI	0.1878624					
NIR	116.1937888					
Red	79.8136646					
Slope	84.9327296					
Image layer	Standard deviation					
nDSM	18.6566253					
Geometry	Extent					
Number of pixels	805					
Haralick texture	GLCM Homogeneity					
NIR	0.0516597					
Haralick texture	GLCM Contrast					
NIR	1464.6646099					

Object	Blue	Green	Red	NIR	NDVI	nDSM	Z-Dev	GLCM	GLCM
								Homog	Contrast
1	105	105	92	138	.20	45	14	.04	1178
2	114	117	102	169	.25	24	18	.03	1151
3	105	108	97	152	.22	31	7.6	.03	914
4	126	133	124	182	.19	27	17	.03	1437
5	119	125	116	162	.17	33	16	.04	1359

2013 Ruleset

🖥 ኃ ୯ 🗣 🗟

🖃 🔲 Ortho_2013

ocess Tree

- Segmentation
 - 🔚 delete '<all levels>'
 - 📲 quadtree: 55 creating 'New Level'
 - at New Level: multi-resolution: 25 [shape:0.1 compct.:0.9]

Classification

(at New Level: remove classification

Ounclassified with Mean NDVI > 0.17 and GLCM Contrast NIR (all dir.) < 2000 and Mean nDSM > 0 and Mean nDSM < 45 at New Level: Mixed Hemlock Unclassified with Mean NDVI <= 0.17 and Mean NDVI > -0.5 and GLCM Contrast NIR (all dir.) > 1500 and Mean nDSM > 0 at New Level: Other Vegetation

- Ounclassified at New Level: NonVegetation_Shadows
- The Nonvegetation_shadows at New Level: merge regit
- The second secon
- I Mixed Hemlock with Number of pixels < 200 at New Level: merge region
- 🖃 🔳 Export
 - 🗔 Mixed Hemlock, NonVegetation_Shadows, Other Vegetation at New Level: export object shapes to Ortho2013_FINAL
 - Wixed Hemlock at New Level: export object shapes to Ortho2013_ClassifiedHemlockPoints

2013 Ruleset

ኃ ୯ 😼 🛐

Ortho_2013

ocess Tree

- Segmentation
 - 🔜 delete '<all levels>'
 - duadtree: 55 creating 'New Level'
 - at New Level: multi-resolution: 25 [shape:0.1 compct.:0.9]
- Classification
 - at New Level: remove classification
 - 🔘 unclassified with Mean NDVI > 0.17 and GLCM Contrast NIR (all dir.) < 2000 and Mean nDSM > 0 and Mean nDSM < 45 at New Level: Mixed Hemlock Ounclassified with Mean NDVI <= 0.17 and Mean NDVI > -0.5 and GLCM Contrast NIR (all dir.) > 1500 and Mean nDSM > 0 at New Level: Other Vegetation

 - Ounclassified at New Level: NonVegetation_Shadows
 - In NonVegetation_Shadows at New Level: merge region
 - 📆 Other Vegetation at New Level: merge region
 - I Mixed Hemlock with Number of pixels < 200 at New Level: merge region
- 🖃 🔲 Export
 - 🗔 Mixed Hemlock, NonVegetation_Shadows, Other Vegetation at New Level: export object shapes to Ortho2013_FINAL
 - Mixed Hemlock at New Level: export object shapes to Ortho2013_ClassifiedHemlockPoints

2013 Ruleset

🖥 ኃ ୯ 🗣 🗟

🖃 🔳 Ortho_2013

ocess Tree

- Segmentation
 - 🔚 delete '<all levels>'
 - 📲 quadtree: 55 creating 'New Level'
 - at New Level: multi-resolution: 25 [shape:0.1 compct.:0.9]
- Classification
 - at New Level: remove classification

unclassified with Mean NDVI > 0.17 and GLCM Contrast NIR (all dir.) < 2000 and Mean nDSM > 0 and Mean nDSM < 45 at New Level: Mixed Hemlock</p>
unclassified with Mean NDVI <= 0.17 and Mean NDVI > -0.5 and GLCM Contrast NIR (all dir.) > 1500 and Mean nDSM > 0 at New Level: Other Vegetation

- Ounclassified at New Level: NonVegetation_Shadows
- TRANSPORTED IN TANSPORTED IN TRANSPORTED INTE INTERPORTED INTERPORTED INTERPORTED IN TRANSPORTED IN TRANSPORTED IN TRANSPORTED I INTERPORTED INTERPORTED INTERPORTED INTERPORTED I INTERPORTED I INTERPORTED I INTERPORTED INTERPORTED
- 📆 Other Vegetation at New Level: merge region
- T Mixed Hemlock with Number of pixels < 200 at New Level: merge region
- 🖃 🔲 Export
 - 🗔 Mixed Hemlock, NonVegetation_Shadows, Other Vegetation at New Level: export object shapes to Ortho2013_FINAL
 - Kixed Hemlock at New Level: export object shapes to Ortho2013_ClassifiedHemlockPoints

2013 Ruleset

🖥 ኃ ୯ 🗣 🗟

🖃 🔲 Ortho_2013

ocess Tre

- Segmentation
 - 🔜 delete '<all levels>'
 - 📲 quadtree: 55 creating 'New Level'
 - at New Level: multi-resolution: 25 [shape:0.1 compct.:0.9]
- Classification
 - (at New Level: remove classification

Unclassified with Mean NDVI > 0.17 and GLCM Contrast NIR (all dir.) < 2000 and Mean nDSM > 0 and Mean nDSM < 45 at New Level: Mixed Hemlock Unclassified with Mean NDVI <= 0.17 and Mean NDVI > -0.5 and GLCM Contrast NIR (all dir.) > 1500 and Mean nDSM > 0 at New Level: Other Vegetation Unclassified at New Level: NonVegetation_Shadows

- 📆 NonVegetation_Shadows at New Level: merge region
- 📆 Other Vegetation at New Level: merge region
- 📆 Mixed Hemlock with Number of pixels < 200 at New Level: merge region
- 🖃 🔳 Export
 - 🗔 Mixed Hemlock, NonVegetation_Shadows, Other Vegetation at New Level: export object shapes to Ortho2013_FINAL
 - Kixed Hemlock at New Level: export object shapes to Ortho2013_ClassifiedHemlockPoints

Shenandoah National Park, 2013

Shenandoah National Park, 2013

Shenandoah National Park, 2013

Image Scatter Plot

- Provides a general overview of how well the classified objects compare to the ground truth waypoints.
- Approximately 42% match.
- Class confusion and object bleed likely contributing factors for errors.
 - Plan to spend more time creating identification keys and testing variations of rulesets to mitigate these errors.

Relationship between Band_1 and Band_2 2,200 0 2,000 1,800 1,600 1,400 Band_2 0 1,200 -R2 = 0.42.... 1,000 00 800 600 400 200 00 200 400 600 800 1,000 1,200 1,400 Band_1

Timeline

Anticipated Results

- 1. GEOBIA workflow can adequately identify hemlock trees within the study area.
- 2. Overall health of the classified hemlocks expected to stay constant or increase slightly due to management efforts for HWA in this area.

Produce maps of final classified areas

- Waypoints (Attributes to include latitude and longitude coordinates)
- Polygons (Attributes to include tree width as a measure of canopy cover)

Questions?

Sources

HWA distribution map third slide: USDA Forest Service, Northern R esearch Station and Forest Health Protection. "Alien Forest Pest Explorer - species map." Database last updated 24 July 2019. https://www.nrs.fs.fed.us/tools/afpe/maps/ (11/29/2021).

All Hemlock Photos: Jonathan Mikolin

Background Photo Last Slide: A segmented and classified (mixed hemlock) orthophoto of Shenandoah National Park in CIR (412 Band combination).