Exploring Optimal GPS Signals for Autonomous Vehicles

Christopher Miller

Overview

I. Background

- I. Motivation
- II. Autonomous Vehicle (AV) Requirements

II. Methodology

- I. Area of Concentration
- II. Data Inputs
- III. Workflow
- III. Tentative Results

Background: Motivation

1.3 billion currently to 2 billion in 2030

Background: Motivation

Automated Driving System:

"hardware and software that are collectively [...] used specifically to describe a level 3, 4, or 5 driving automotive system" - SAE International, 2018a

"Provide high resolution and accurate 3D maps around the vehicle that allow obstacle detection and support safe navigation" - Filgueira, 2017

"reduced contrast of the lanes (e.g. reflections, low light) or other disruptive factors such as snow or old lane markings" (Adali, 2018).

Methodology: Area of Concentration

Washington, D.C.

Access to data – opendata.dc.gov

Infrastructure – future integration potential

Interest within the City –

Need to improve Member of an initiative group

Viewshed Tool in ArcMap

Surface elevation raster – digital surface model (DSM)

Point data, including height (OFFSETA) – satellite locations

Almanac – easy to use .txt files, but less accuracy and additional calculations

Point data, including height (OFFSETA) – satellite locations

Broadcast Ephemerides – more accurate but harder to use

IGS INTERNATIONAL G N S S SERVICE

.sp3.z format – UNIX compressed ASCII **El-naggar's paper**: New method of GPS orbit determination from GCPS network for the purpose of DOP calculations

Point data, including height (OFFSETA) – satellite locations

Precise Ephemerides – most accurate

GS INTERNATIONAL GNSSSERVICE .sp3.z format – UNIX compressed ASCII **E. Paggar's paper:** New method of GPS orbit determination from GCPS intwork for the purposinf CPP calculation

Point data, including height (OFFSETA) – satellite locations

Almanac – easy to use .txt files, but less accuracy and additional calculations

Precise Ephemerides –

XYZ geocentric coordinates of satellites

Precise Ephemerides –

XYZ geocentric coordinates of satellites

Conversion into geodetic –

Latitude and Longitude: NGS's NCAT

Altitude:

 $h = s\cos\mu + (pz + e2N\sin\mu)\sin\mu - N$

where the radius of curvature in the vertical prime (N) is given by $N=RG1-e2(\sin\mu)2$

*Using Python or Model Builder

*Using Python or Model Builder

Tentative Results

Obstacle when obtaining .sp3.z files

Hypothesis:

Conversion still possible

Line of sight will be present for the majority of the city

Building height and street width increase visibility

Forest canopies in northwest may be only areas of limitation

ID	DESCRIPTION	ESTIMATED
		COMPLETION
1	Download lidar point cloud files from opendata.gov	Dec-19
2	Import to LP360	Jan-20
3	Create a DSM from point cloud	Jan-20
4	Import raster DSM to ArcMap	Jan-20
5	Determine calculation necessary for satellite locations	Jan-20
6	Submit Abstract	Feb-20
7	Assess ephemerides and Almanac data source parameters	Mar-20
8	Calculate satellite locations coordinates	Apr-20
9	Convert XYZ coordinates to geodetic latitude, longitude and altitude	May-20
10	Use Viewshed to determine visible areas across DC area	May-20
11	Replicate using for multiple satellites, dates and times – potential to use model builder or Python	Jun-20
12	Use polyline road features from open data DC or lidar classified road points as intersection against viewshed	Jun-20
13	Display areas of visibility from least to the greatest obstruction	Jun-20
14	Analyze areas including city street routes of optimal visibility	Jul-20
15	Draft Report	Sep-20
16	Draft Presentation	Sep-20
17	Present Findings	Oct-20
18	Finalize Report	Dec-20

References

Adali, Erkan et al. (2018). Detecting Road Lanes under Extreme Conditions: A Quantitative Performance Evaluation. 2018 6th International Conference on Control Engineering & Information Technology (CEIT). Retrieved in November 10, 2019 from <u>https://ieeexplore-ieee-org.ezaccess.libraries.psu.edu/document/8751835</u>.

Adjrad, Mounir, et al. (2019). *Performance assessment of 3D-mapping-aided GNSS part 2: Environment and mapping*. Navigation, Volume 66, Issue 2. Retrieved in November 10, 2019 from <u>https://onlinelibrary-wiley-com.ezaccess.libraries.psu.edu/doi/full/10.1002/navi.289.</u>

DMPED. (2019). Autonomous Vehicles Working Group. DC.gov. Retrieved on November 9, 2019 from https://dmped.dc.gov/page/autonomous

El-naggar, Aly. (2012). *New method of GPS orbit determination from GCPS network for the purpose of DOP calculations*. Alexandria Engineering Journal. Retrieved on December 9, 2019 from <u>https://www.sciencedirect.com/science/article/pii/S1110016812000464#t0020</u>.

Filgueira, A. et al. (2017). *Quantifying the Influence of Rain in Lidar Performance*. Measurement, Volume 95. Retrieved on October 18, 2019 from https://www-sciencedirect-com.ezaccess.libraries.psu.edu/science/article/pii/S0263224116305577.

Gossling, Stefan. (2017). *The Automotive System*. The Psychology of the Car, Chapter 1, Pages 1-18. Retrieved on October 24, 2019 from https://www-sciencedirect-com.ezaccess.libraries.psu.edu/science/article/pii/B9780128110089000016.

GPS.gov. (2019). *Space Segment*. U.S. Air Force. Retrieved December 8, 2019 from <u>https://www.gps.gov/systems/gps/space/</u>.

Hedgpeth, Dana. (2019). 'It's a waste of time': Washington is No. 3 in traffic congestion, study says. Washington Post. Retrieved on December 15, 2019 from https://www.washingtonpost.com/local/trafficandcommuting/its-a-waste-of-time-washington-is-no-3-in-traffic-congestion-study-says/2019/08/22/e6602e0e-c4d6-11e9-b72f-b31dfaa77212_story.html.

IGS. (2019). Access to Products. International GNSS Service. Retrieved on December 9, 2019 from <u>https://kb.igs.org/hc/en-us/articles/115003935351</u>.

Jin, Shuaggen, et. al. (2014). GNSS Remote Sensing: Theory, Methods and Applications, Chapter 1, page 5. Springer Science and Business Media Dordrecht,. Retrieved on December 4, 2019 from <u>https://link-springer-com.ezaccess.libraries.psu.edu/book/10.1007%2F978-94-007-7482-7</u>

Luettel, Thorsten, et al. (2012). Autonomous Ground Vehicles—Concepts and a Path to the Future. IEEE, Special Centennial Issue. Retrieved on December 4, 2019 from https://ieeexplore-ieee-org.ezaccess.libraries.psu.edu/document/6179503

References (continued)

Monaghan, R. (2006). *GPS Satellite Position Estimation from Ephemeris Data by Minimum Mean Square Error Filtering Under Conditions of Selective Availability*. Retrieved on December 11, 2019 from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.297.6452&rep=rep1&type=pdf.

MathWorks. (2019). *ECEF Position to LLA*. MathWorks. Retrieved on December 15 from <u>https://www.mathworks.com/help/aeroblks/ecefpositiontolla.html</u>.

NGS. (2000). *Standard Product #3 ASCII SP3 Format*. National Oceanographic Atmospheric Administration. Retrieved on December 9, 2019 from https://www.ngs.noaa.gov/orbits/SP3_format.html.

NGS. (2019). NGS Coordinate Conversion and Transformation Tool. NOAA. Retrieved on December 8, 2019 from https://www.ngs.noaa.gov/NCAT/.

Navigation Center. (2019). GPS ALMANACS, NANUS, AND OPS ADVISORIES ARCHIVES. U.S. Department of Homeland Security. Retrieved on December 8, 2019 from https://www.navcen.uscg.gov/?Do=gpsArchives&exten=txt.

NCPC. (1998). PART I: HISTORICAL BACKGROUND ON THE HEIGHT OF BUILDINGS ACT. National Capital Planning Commission. Retrieved on December 10, 2019 from https://www.ncpc.gov/heightstudy/docs/Historical_Background_on_the_Height_of_Buildings_Act_(draft).pdf.

Open Data DC. (2019). *Lidar – DC Point Cloud – 2018*. District of Columbia GIS Program. Retrieved on November 11, 2019 from <u>https://opendata.dc.gov/datasets/e412b5f1f3bc4a89a5bebc496c1a5279</u>.

SAE International. (2018a). *Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles*. Surfaced Vehicle Recommended Practice. Retrieved on November 11, 2019 from https://www.sae.org/standards/content/j3016_201806/preview/.

SAE International. (2018b). SAE International Releases Updated Visual Chart for Its "Levels of Driving Automation" Standard for Self-Driving Vehicles. Retrieved on November 8, 2019 from https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%E2%80%9Clevels-of-driving-automation%E2%80%9D-standard-for-self-driving-vehicles

Sickle, Jan Van. (2019). *Geocentric Datum*. GEOG 862: GPS and GNSS for Geospatial Professionals, Lesson 5: Geodetic Datums. Retrieved on December 11, 2019 from https://www.e-education.psu.edu/geog862/node/1798.

Exploring Optimal GPS Signals for Autonomous Vehicles

Christopher Miller