Scoring Groundwater Infiltration & Sewage Exfiltration Risk in a Sanitary Sewage Collection System

Meredith S. Moore

CHARLOTTE

WOTER

Charlotte Water maintains 4,189 miles of wastewater mains that carry 123 million gallons of sewage to be treated each day.

Sewage Exfiltration into Soils & Groundwater

Derived from http://cfpub.epa.gov/ ncer_abstracts/images/fckimages/ index.cfm?imgid=6781

http://www.krwa.org/water-wastewater/

Groundwater Infiltration into Sewer Lines

Derived from http://cfpub.epa.gov/ ncer_abstracts/images/fckimages/ index.cfm?imgid=6781

The Plan

consumption amounts from Extract Test surfaces November 2014 against survey-grade water meter data documented (SG) manholes infiltration Select Locate or from GIS accumulated flow elevations through collection develop potential the best data groundwater Utility Network **GWE** Spatial Analyst elevation (GWE) Extract Values to surface surfaces Points Scoring Spatial Analyst: Extract Values Pipes Above to Points Groundwater WW mains Assign GWE Elevation Assign Pipe Average pipe diameter of 8.5 inches: pipes in th upper portions of drainage begins in areas with a high value to each Volume **ABOVE** GWE Material SG manhole Score (1 - 5) Score (1 - 5) scored by risk density of survey grade data Represents 18.5% of the pipes in the analysis of sewage exfiltration Spatial Join: Output Dataset: Summarize Scores Output SG Manholes to WW mains Wastewater (WW) Mains Dataset: w/scores, pipe Split datasets by SG manholes elevations, GWEs, and Append averaged position above or with GWEs position relative Pipes Below manhole inverts & below GWE GWEs to each WW to GWE Groundwater WW mains main: calculate Elevation position relative **BELOW** GWE to GWE. scored by risk of groundwater Represents 81.5% of the pipes in the analysis infiltration

The Plan

Locate or develop potential groundwater elevation (GWE) surfaces Test surfaces against documented infiltration elevations

Spatial Analyst: Extract Values to Points Select the best GWE surface

CCTVDocumented Infiltration Locations

USGS
Groundwater
Elevation
Raster

Correct
Predictions:
14 out of 245
locations,
5.7%

"Keep in mind this was created in 2001! The elevation and slopes aren't based on the new elevation data derived from lidar, so it may be worth alternate ways of getting to the estimate of depth to water."

-Silvia Terziotti USGS

USGS Regression Equation with New Input Data

USGS
Regression
Equation
with New
Inputs

Correct
Predictions:
0 out of 245
locations,
NONE

Flood Study Points:

- 1,046 survey
 grade cross
 sections/stream
 inverts collected
 for Meck Co flood
 study
- 5,547 remaining stream inverts were modeled with HEC-RAS

Piedmont stream beds and monitoring wells intersect the water table.

http://www.maine.gov/dacf/mgs/explore/water/facts/aq-01. gif

Stream Invert Elevation = Groundwater Elevation

Monitoring Well
Static Water Level =
Groundwater
Elevation

Inverse Distance
Weighted
Interpolation
Groundwater
Elevation Raster

Inverse Distance Weighted Interpolation Groundwater Elevation Raster

Correct
Predictions:
115 out of
245 locations,
47%

Flood Study Points:

- 1,046 survey
 grade cross
 sections/stream
 inverts collected
 for Meck Co flood
 study
- 5,547 remaining stream inverts were modeled with HEC-RAS

Regression Analysis

- Performed regression analyses on multiple combinations of available datasets (specific to Mecklenburg County)
- On the advice of USGS staff, chose a regression equation that incorporated GWE, elevation, and slope values:

GWE = 26.209 + (0.954*Elevation) + (0.085*Slope)

Mecklenburg Correctly-Predicted Infiltration Locations County Infiltration Locations Documented during **CCTV Investigations** Regression Analysis Correct **Predictions:** Groundwater 219 out of 245 locations, Elevation 89% Raster

The Plan

consumption amounts from Extract Test surfaces November 2014 against survey-grade water meter data documented (SG) manholes infiltration Select Locate or from GIS accumulated flow elevations through collection develop potential the best data groundwater Utility Network **GWE** Spatial Analyst elevation (GWE) Extract Values to surface surfaces Points Scoring Spatial Analyst: Extract Values Pipes Above to Points Groundwater WW mains Assign GWE Elevation Assign Pipe Average pipe diameter of 8.5 inches: pipes in th upper portions of drainage begins in areas with a high value to each Volume **ABOVE** GWE Material SG manhole Score (1 - 5) Score (1 - 5) scored by risk density of survey grade data Represents 18.5% of the pipes in the analysis of sewage exfiltration Spatial Join: Output Dataset: Summarize Scores Output SG Manholes to WW mains Wastewater (WW) Mains Dataset: w/scores, pipe Split datasets by SG manholes elevations, GWEs, and Append averaged position above or with GWEs position relative Pipes Below manhole inverts & below GWE GWEs to each WW to GWE Groundwater WW mains main: calculate Elevation position relative **BELOW** GWE to GWE. scored by risk of groundwater Represents 81.5% of the pipes in the analysis infiltration

The Plan

Locate or develop potential groundwater elevation (GWE) surfaces Test surfaces against documented infiltration elevations

Spatial Analyst: Extract Values to Points

Extract survey-grade (SG) manholes Select from GIS the best data **GWE** surface **Spatial Analyst: Extract Values** to Points Assign GWE value to each SG manhole

Output Dataset:

Spatia SG Man Wastewater Output
Dataset:
SG manholes
with GWEs

Spatial Join: SG Manholes to Wastewater (WW) Mains

Append averaged manhole inverts & GWEs to each WW main; calculate position relative to GWE.

Output Dataset:
 WW mains
 w/scores, pipe
elevations, GWEs, and
 position relative
 to GWE

- Customer consumption amounts from November 2014 water meter data
- Traced & accumulated flow through collection system using Utility Network Analyst

Scoring

Assign Flow Volume Score (1 - 5)

Assign Pipe
Material
Score (1 - 5)

Spatial Join:

Output Dataset:

Summarize Scores

WW r ABOV scored

of sev

exfiltr

Scoring

Assign Flow
Volume
Score (1 - 5)

Assign Pipe Material Score (1 - 5)

Output Dataset:
 WW mains
 w/scores, pipe
elevations, GWEs, and
 position relative
 to GWE

Summarize Scores

Split datasets by position above or below GWE

WW mains
ABOVE GWE
scored by risk
of sewage
exfiltration

- Average pipe diameter of 8.5 inches: pipes in the upper portions of drainage basins in areas with a high density of survey grade data
- Represents 18.5% of the pipes in the analysis
- Scores only range to
 (of a possible 10)

WW mains **BELOW** GWE

scored by risk

of groundwater

infiltration

- Average pipe diameter of 14.4 inches: larger pipes in the lower portions of drainage basins
- Represents 81.5% of the pipes in the analysis

Pipes Above Groundwater Elevation

Pipes Below Groundwater Elevation

Pipe Position in Relation to Groundwater Elevation

Transitional Zone

Future Plans & Uses for the Datasets

- Scored pipe datasets can be extracted by varying elevation criteria, but the flow and material scoring will be consistent no matter what the pipe position relative to the groundwater elevation.
- This is a flexible dataset. As we gather more survey grade data for our infrastructure, more pipes can be scored and evaluated.
- The flow data will change over time and will need to be reevaluated as population grows, shrinks, or shifts around the county.
- This data can be used as criteria in prioritizing sewer line rehabilitation and repair plans.
- The datasets and groundwater elevation raster will be provided to CMSWS for potential use in planning targeted water quality monitoring.

Acknowledgments

Dr. Barry Evans Penn State

PENN<u>STATE</u>

Rob Bailey Charlotte Water

CHARLOTTE

James Scanlon CMSWS

Silvia Terziotti USGS

References

- Bannister, Roger A. (2013). Incorporating Professional Judgment into Groundwater Contouring Tools within GIS. Provided by Roger Bannister.
- Charlotte-Mecklenburg Storm Water Services (2015). Mecklenburg County Flood Study layers [Data files]. Provided by James Scanlon of Charlotte-Mecklenburg Storm Water Services.
- Department of Agriculture, Conservation and Forestry. (2005). Sand and Gravel Aquifers. Retrieved from http://www.maine.gov/dacf/mgs/explore/water/facts/aquifer.htm [Accessed 09/18/2014].
- Fels, John E., & Matson, Kris C. (1996). Approaches to Automated Water Table Mapping. Retrieved from http://www.ncgia.ucsb.edu/conf/SANTA_FE_CD-ROM/sf_papers/matson_kris/santa-fe.2.html [Accessed 09/03/2014].
- Folkman, Steven, Ph.D., P.E. (2012). Water Main Break Rates in the USA and Canada: A Comprehensive Study.
 Retrieved April 23, 2013 from http://www.watermainbreakclock.com/docs/
 UtahStateWaterBreakRates_FINAL_TH_Ver5lowrez.pdf.
- Mecklenburg County Department of Environmental Protection (2000). Well Installation Report. Mecklenburg County, North Carolina.
- Mecklenburg County Geospatial Services (2014). Mecklenburg County monitoring well layers [Data files].
 Provided by Jamie Metz of Mecklenburg County Geospatial Services.
- USDA, NRCC. (2015) The Gridded Soil Survey Geographic (gSSURGO) Database for North Carolina [Data file]. Available online at http://datagateway.nrcs.usda.gov. [Accessed 04/09/2015].
- USGS. (2001). Estimated Depth to Water, North Carolina [Data file]. Provided by Silvia Terziotti of USGS.
- USGS. (2012). Groundwater Frequently Asked Questions. Retrieved from http://nc.water.usgs.gov/about/faq_ground.html [Accessed 08/22/2014].

Meredith S. Moore msmoore@charlottenc.gov

CHARLOTTE

WUTER

charlottewater.org