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Abstract

In this paper we present an extension to the Large Crater Clustering

(LCC) tool set which places a cone of uncertainty around the trajectories of

secondary impact craters to determine potential locations of source craters.

The LCC tool set was a first step in the spatial quantification of primary and

secondary cratering processes, which allows planetary geologists to accurately

estimate the geologic age of a celestial surface. This work builds on the LCC

tool set by accounting for the ambiguity of flight path trajectories through

a Python script that leverages ArcGIS’s ArcPy library. We chronicle the

mechanics of the script, which creates geodetically correct cones then counts

them within equally sized cells of a vector grid. We describe the process

that was used to derive the shape of the cone and provide parameters for the

sizes of the cones and the grid. We demonstrate that the cone of uncertainty

has the ability to compensate for error in secondary crater trajectories by

introducing deviation in the trajectory bearing and comparing the predicted

primary crater location. We use two study areas on Mars as well as the entire
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lunar surface to illustrate the usefulness of the extension as an aid to human

interpretation of back-projections.
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1. Introduction1

Crater counting, crater size frequency distribution assessment, and the2

identification of the relationship between primary and secondary craters are3

tools used to determine the age of a celestial body (Shoemaker et al., 1963;4

Barlow, 1988; McEwen and Bierhaus, 2006; Robbins and Hynek, 2014, 2012;5

Platz et al., 2013). Shoemaker (1962) identified secondary craters, those re-6

sulting from ejecta being propelled from a primary impact to be deposited7

elsewhere on the surface, as one of the main issues of using crater size-8

frequency distributions for temporal analysis. These secondaries contaminate9

crater counts to bias the data in a given area toward older geologic dating.10

The distinction of primary versus secondary craters must be approximated11

in order to perform accurate surface aging, and allows an opportunity to12

further our understanding of cratering processes.13

Primary and secondary craters have distinctive patterns, morphologies,14

sizes, and orientations that provide opportunities for traditional spatial anal-15

ysis (McEwen and Bierhaus, 2006; Laura et al., 2017). The average impact16

angle of a primary impact crater is approximately 45◦ (Shoemaker, 1962;17

McEwen and Bierhaus, 2006) and results in secondary impact craters with18

2



a range of impact angles and morphologies (McEwen and Bierhaus, 2006).19

McEwen and Bierhaus (2006) suggest that secondary impacts are frequently20

smaller (<5% of primary impact diameter), shallower, and more elliptical21

than primary craters, appearing to have been scooped out from the sur-22

face. Spatially, secondary craters can often be found in a tight ring around23

the primary that formed them or clustered in rays emanating from the pri-24

mary (Preblich et al., 2007; McEwen et al., 2003). The shape of secondary25

clusters, catenae, and lineaments provide a means to estimate the primary26

crater location by back-projecting a trajectory either through multiple fea-27

tures (polylines) or through semi-major axes of bounding ellipses (clustered28

point data or crater clusters digitized as bounding ellipses) and locating in-29

tersections between these trajectory estimations. Back-projecting secondary30

craters can be done through a combination of human interpretation (McEwen31

et al., 2003) and geospatial analysis (Laura et al., 2017).32

Skinner and Nava (2011) and Laura et al. (2017) identify the need for a33

quantitative method to study primary and secondary cratering. The Large34

Crater Clustering (LCC) tool set was developed to respond to this need. The35

LCC tool set transforms user supplied, secondary craters into trajectories36

which are back-projected along great circle arcs to estimate potential source37

crater locations. The tool set represents a first step in quantitatively exam-38

ining secondary to primary crater flight trajectory relationships and provides39

a means to further studies that seek to empirically quantify and constrain40

secondary ejecta flight properties. The LCC tool set is comprised of the fol-41

lowing five tools (processing steps) to support primary location estimation:42

(1) calculating the nearest-neighbor distances among a set of independently43
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digitized input crater features, (2) using these distances to identify clusters44

of craters, (3) fitting an ellipse to bound the clusters, (4) back-projecting45

the ellipse along the semi-major axis to produce a flight path trajectory, and46

(5) intersecting these trajectories (polylines) to estimate the primary impact47

(Laura et al., 2017). When features are digitized as polyline or bounding el-48

lipses the tool can begin running at step four. In conjunction with the LCC49

tool, Laura et al. (2017) implement a value-by-alpha visualization developed50

by Roth et al. (2010a) that uniformly buffers secondary trajectories to some51

user defined distance and utilizes the transparency (or alpha) component52

of the buffered geometry to support visual identification of areas of highest53

intensity, and therefore most likely primary impact location.54

The LCC tool set has spatial analysis issues that can result in significant55

ambiguity in quantitative primary impact crater identification. Laura et al.56

(2017) identify issues regarding digitization, the impact of cluster outliers,57

edge effects, and the Modifiable Areal Unit Problem (MAUP)1 (O’Sullivan58

and Unwin, 2010). In this work we directly address the error in the resulting59

trajectories and comment on the MAUP in the search for primaries. This60

paper describes our extension to the LCC tool set which places a cone of61

uncertainty around the projected secondary flight trajectory to account for62

ambiguity in ejecta flight paths and in the digitization process.63

The balance of this paper is arranged as follows. In Section 2 we describe a64

Python script that fits a cone of uncertainty to secondary crater trajectories.65

In Section 3 we describe a simulation which introduces sources of trajectory66

1Bias in the analysis resulting from the placement of the study area boundary or the

scale that was used.

4



error in a test area to evaluate the effectiveness of the cone. Section 4 explores67

three case studies, one from the Moon and two from Mars, to evaluate the68

cone of uncertainty in real scenarios. Finally, in Section 5, we comment on69

the validity of the cone of uncertainty and look ahead to future work.70

2. Methods71

In this work, we address issues of ambiguity in back-projection through72

the use of the cone of uncertainty and provide quantitative methods for73

the computation and interpretation of trajectory intersections. Using the74

back-projected secondary flight trajectories (from the LCC tool) we create75

two outputs: (1) a cone of uncertainty fit around each trajectory and (2)76

a vector grid whose values represent the number of overlapping cones. The77

former seeks to account for spatial ambiguity and digitization bias and the78

latter seeks to reduce the need for visual identification of high trajectory79

intersection locations, i.e., qualitative interpretation. In this section, we80

describe the selection of shapes the uncertainty buffer may take and the81

implementation of the LCC extension.82

The cone of uncertainty is perhaps most widely known in tropical storm83

forecasting, where an event’s location becomes increasingly uncertain with84

time and distance. In this construct the cone serves as an aid to forecast the85

future. Figure 1 shows the basic construction of a cone of uncertainty. When86

looking at secondary craters we view the same phenomenon in reverse. In this87

case the event has already occurred with a known endpoint but an unknown88

starting point. The best fit flight path of ejecta has increasing uncertainty89

as the distance from the secondary (toward the starting point) increases. By90
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looking at an individual crater feature, we can create a cone with increasing91

width away from the feature representing the greater uncertainty of its ori-92

gin. The uncertainty in secondary crater flight trajectories is known to exist93

with constraints developed by Popova et al. (2007), but there is currently94

no quantitative method that exists to incorporate this uncertainty into the95

back-projection process.96

!

Feature Best Fit Path Cone of Uncertainty

á

á

á

á Distance from Feature

Amount of
Uncertainty

Figure 1: Cone of uncertainty shown as a shape that follows a best-fit trajectory. Width

of the cone corresponds to the amount of uncertainty in the best-fit path, where a wider

shape represents greater uncertainty.

2.1. Cone of Uncertainty Creation97

We have extended the LCC tools by creating a Python (van Rossum and98

Drake, 2016) script which uses the output of the fourth processing step, a set99

of vector features representing the back-projection, to fit a cone of uncertainty100

around the trajectory and ultimately estimate the primary impact. The101

creation of the cone has four basic steps: (1) creating the trajectory within102

the LCC tool set, (2) buffering the endpoints of the trajectory, (3) creating a103
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convex hull to encapsulate the space, and (4) adjusting the shape of the hull104

to account for the curvature of the surface. These four steps are depicted in105

Figure 2.106

Use of the LCC tool and the creation of the line trajectory is described107

by Laura et al. (2017). The output of the LCC back-projection tool is a108

bi-directional line, with each segment ending at the secondary crater. In109

most cases, and without additional geomorphic knowledge of the feature, it110

is unknown from which direction along the semi-major axis the ejecta flew111

(McEwen and Bierhaus, 2006). The second phase of the cone creation, shown112

in (b) of Figure 2, buffers the starting and ending points of the trajectory.113

These buffers establish limits on the size of the cone where larger buffers114

indicate larger cones and greater uncertainty. More specifically, the amount115

of uncertainty is given by the size of the buffer around the starting point116

of the trajectory, the furthest point from the secondary. The buffer is a117

geodetic circle with a user defined radius. The user has the ability to enter118

multiple buffer sizes. If multiple sizes are entered, a separate layer of cones119

will be created for each entered size. The buffer for the end of the trajectory,120

near the secondary, is a small standard circle that represents the minimal121

amount of uncertainty in the region. The small buffer also prevents potential122

overlap with the ending buffer of the other half of the bidirectional line for123

that secondary.124

The next step creates a polygonal shape to encapsulate the line endpoint125

buffers. The two buffers are merged into one multipart polygon, then a126

convex hull2 envelops the space around it by wrapping around the outside127

2The smallest shape that can be created that contains all given points where no line
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half of each buffer and connecting in between them. The convex hull allows128

the amount of uncertainty to uniformly increase from the secondary to the129

buffer around the starting trajectory. This is depicted in (c) of Figure 2. The130

resulting shape is a planar hull that follows the projection being used but not131

the shape of the surface, therefore the distance to the trajectory is unequal132

along the entire feature and in some cases the trajectory may be outside the133

hull. The final step in the cone creation process corrects for this by altering134

the hull so that it represents the shortest distance along the surface and135

follows the path of the trajectory. The final output is shown as (d) in Figure136

2.137

(a) Trajectory (b) Buffer (c) Convex Hull (d) Final Cone

Figure 2: Four basic steps in building the cone of uncertainty are (a) the starting trajectory

(b) buffering the starting point according to a user-defined distance (c) creating a convex

hull of the shape (d) geodetically altering the hull to arrive at the final cone.

2.2. Counting Intersecting Cones138

Once the cones have been created, the final section of the LCC exten-139

sion script focuses on identifying source craters by counting the number of140

drawn between those points extends outside the shape.
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cones that intersect with a uniform grid. This is a similar concept to the141

Value-By-Alpha approach developed by Roth et al. (2010b) and described142

for use in identifying primary craters by (Laura et al., 2017). While Laura143

et al. (2017) sifted for primaries qualitatively, the grid approach taken in the144

LCC extension aims to suggest source craters quantitatively. Our extension145

supports exploration of issues of scale (MAUP) by allowing for multiple runs146

with differing cell sizes to create a more complete picture of the crater rela-147

tionships. The grid approach aids in human interpretation by allowing the148

user to identify patterns within the study area. Examples of interpretation149

of the data using this method are given in Section 4.150

Counting the overlapping cones is a three step process using the LCC151

extension: (1) creating a grid, (2) performing a spatial join between the152

layer of cones and the grid, and (3) depicting the resulting number of counts.153

These three steps are illustrated in Figure 3. The extension requires an initial154

specification of a projection for subsequent processing. The data from the155

LCC tool set should be re-projected to an equal-area projection to ensure156

the grid cells are of equal size. Other projections may distort the grid sizes157

and resulting cone counts.158

The analysis grid is created by utilizing the fishnet function within the159

ESRI ArcGIS ArcPy site package. The extent of the grid is set to match160

that of the original trajectory layer. A user defined size, input at the begin-161

ning of the script, determines the size of each grid cell. With the grid and162

cone layers in place, a spatial join is performed that counts the number of163

features in the cone layer that overlap with each feature (cell) in the grid.164

A new layer is created, having identical spatial properties as the grid, which165
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(a) Grid Creation (b) Spatial Join

Cones Per Cell
0 - 1
2
3
4

(c) Intersections

Figure 3: Quantitatively searching for a primary crater is a three step process: (a) creating

a grid (b) intersecting it with the trajectory cones (c) thematically representing the overlap

counts.

contains this count. In order to make use of this information, the data are166

exported out to an ArcMap .mxd document. The method of classification167

and thematic representation occur external to the LCC extension. Examples168

of these depictions are shown in Sections 2.3, 3, and 4.169

2.3. Testing and Parameterization170

We empirically tested five cone of uncertainty shapes with the goal of171

determining which would be the best predictor of a primary crater. These172
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shapes were designed to test which area(s) along the trajectory typically in-173

tersect the source crater and how the size of the shape affected predictability.174

The first round of testing was intended to compare the cone against the the-175

oretically most predictive sections of the line trajectory. Figure 4 illustrates176

each of the five tested shapes with the initial polyline depicted at the center.177

These shapes are as follows:178

1. A single uniform buffer, intended to show some variability in the line179

trajectory that does not deviate with distance. This is the simplest fit180

around a trajectory and was selected as a ‘proof of concept’ of using a181

shape, in lieu of a line, to predict a primary. When compared to the182

output of the cone test this geometry provides an idea of how strong183

the middle of the cone predicts a primary relative to its periphery.184

2. A circular buffer placed around the starting point (point opposite the185

secondary), or beginning of the modeled flight path, where the primary186

crater should be. This buffer is similar to the widest section of the cone187

and allows us to see how accurate this portion of the shape is, and how188

well the length of the LCC line can pinpoint the primary. We note that189

that the LCC trajectory tool supports user defined trajectory length,190

making estimation using this method a function of both the selected191

buffer size and the user defined flight distance length.192

3. A uniform cone, the classic shape from hurricane modeling, where the193

girth becomes wider as the distance away from the secondary increases.194

This was the most intuitive shape because of the uncertainty of the195

trajectory between the secondary and primary. In theory this shape196

should be the most predictive so if shapes (1) or (2) are significantly197
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more predictive the cone will need to be altered.198

4. A cone given a weight corresponding to the ellipticity of the secondary199

crater feature. The less predictive, circular crater clusters receive a cone200

that has a lower weight. It was an attempt to see if the cone could be201

improved by tying the overlap count to the ellipticity of the cones rather202

than the number of cones. If successful, it should significantly improve203

the prediction of Zunil.204

5. A nested cone which keeps the intuitive cone approach but gives higher205

weight to the middle and end of the trajectory, the area near the trajec-206

tory and closest to the secondary, which are the most predictive aspects207

of the cone as determined from the first three shapes. In practice this208

is not one cone but three on top of each other so a grid cell intersecting209

the last half of the trajectory line would be given a count of three, not210

one as in the case of the uniform cone. Thus it implicitly gives more211

weight to those parts of the cone deemed most predictive.212

Each shape was fit around trajectories created in the LCC tool set from213

a sample of known secondaries originating from Zunil Crater, Mars. Figure214

4 displays these basic shapes, their fit to the Zunil trajectories, and the215

overlap counts for each of the tests. As explained in Section 2.2, the highest216

intersection counts per cell suggest the location of a primary, in this case217

Zunil, and are displayed with darker shading. The red circle is the actual218

location of Zunil.219

Of the three initial shapes, only the starting point circular buffer was220

unable to suggest the general location of Zunil. It is assumed then that the221

uncertainty near the beginning of the trajectory is relatively large. How-222
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Figure 4: Basic cone shape, shape placed around Zunil secondary trajectories, and over-

lapping shape counts for (1) simple uniform buffer, (2) circular buffer around beginning of

trajectory, (3) uniform cone, (4) weighted cone based on ellipticity, and (5) nested cone.

Uniform cone is the best compromise of source crater predictability and script run time.

ever, it should be noted that other crater systems may align well with the223

beginning of the modeled flight path. Looking at the location of Zunil and224

the other shapes it is clear that Zunil is typically within the last half of the225

trajectory. The uniform buffer and cone both predicted the general location226

of Zunil. The cone was more precise in its prediction, and has a more intu-227

itive shape given the distance-uncertainty relationship described in Section228

2. Therefore we determine from these three initial tests that the cone can229

be used to predict the location of a source crater, and that the area closest230

to the trajectory and away from the starting point are the most predictive.231

With this knowledge, we tested two additional methods to see if the cone232
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could be improved.233

The cone shape based on ellipticity was not significantly more predictive234

of Zunil than the uniform cone, and required additional run time. Within235

the LCC tool the user has the ability to place a threshold on the ellipticity of236

secondary features when creating the trajectories, and therefore we suggest237

including a cutoff here to include only those trajectories whose directional dis-238

tribution can be confidently assumed. While it is the most complete picture239

of the trajectory, the successes of the nested cones are offset by the increased240

required storage and run time. Therefore, the uniform cone was selected as241

the final shape, having the most desirable trade-off between predictability,242

run time, and disk space.243

The usefulness of the LCC extension is tied not only to the shape of244

uncertainty being used, but the size that shape takes as well as the grid that245

counts it. For the cone it is assumed that the uncertainty near the secondary246

crater is low and thus the minimum width is essentially zero, as the location247

of the secondary is known without modeled ambiguity. Popova et al. (2007)248

suggest that the maximum width dispersion of a given set of secondaries from249

a primary (e.g., a single trajectory) is at most 25 kilometers. We utilize this250

constraint as a starting point in cone selection. While a known trajectory251

may have a width dispersion of 25 kilometers, we must expand this value to252

account for ambiguity in the digitization and trajectory estimation processes.253

For the Zunil system, cones having starting trajectory buffer diameters of 5,254

10, 25, 50, and 100 kilometers were tested. The resulting cones counted255

over a grid with 400 square kilometer cells is shown in Figure 5. With no256

significant difference in run time, larger cones tended to distill the overlaps257
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down to a useful level.258

Figure 5: Cones of various sizes enumerated against a grid with 400 square kilometer cells

in the Zunil test area. The largest cones create the most intersections and a more complete

picture of the region.

The grid cell size is dependent on the spread of trajectories, the amount of259

detail required by the user, and the amount of run time desired. To test the260

size of the grid cells counting the cone intersections, cones having a maximum261

width of 50 kilometers were intersected with grids having cell sizes of 25, 100,262

400, 2,500, and 10,000 square kilometers for the Zunil test area. The results263

of this test are shown in Figure 6. The two smallest grid cell sizes created264

numerous areas without intersections and made visual pattern recognition265

more difficult. The two largest grid cell sizes tended to mask much of the266
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useful detail for human interpretation. The grid with 400 square kilometer267

cells provided the best compromise of detail and run time.268

Figure 6: 50 kilometer cone of uncertainty enumerated against grids of varying cell sizes

in the Zunil test area. Largest grid sizes run fastest, but with least detail.

Table 1 shows the increasing amount of time required for more granular269

cells. It also shows the runtime for cones of various sizes run over a 400270

square kilometer grid. The algorithm is more sensitive to the resolution of271

the grid cell and the number of grids being run. The balance of run time272

and detail required will depend on the user and system. The user has the273

ability to run multiple cone and grid options simultaneously, and may choose274

to do so to establish the most useful combination. It is recommended that275

the user try several cone sizes and compare the output to gather the most276
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information possible for the area at hand. A suggested default for a grid size277

in a Martian quadrangle is 400 square kilometer cells.278

Cone Size (Km) Grid Size (Sq Km) Runtime

50 10,000 x

50 400 1.3x

50 25 7.0x

50 25, 100, 400, 2,500, 10,000 9.3x

5, 10 400 1.1x

5, 10, 25 400 1.1x

5, 10, 25, 50 400 1.2x

5, 10, 25, 50, 100 400 3.4x

Table 1: Script runtime for Zunil secondaries with various cone and grid selections.

3. Accounting for Uncertainty279

3.1. Sources of Error280

The usability of the cone of uncertainty in back-projecting secondary281

craters is contingent on its effectiveness in identifying the location of source282

craters and compensating for error in the trajectory itself. A line back-283

projection is a best estimate of a dynamic process having uncertainty arising284

from the following factors:285

• Inevitable uniqueness in the individual secondary crater trajectories286

• Continually developing science in the flight path of impact ejecta287
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• Uncertainty in the digitization of crater features288

Although the first source of error almost certainly will exist, it is difficult289

to capture the deterministic randomness that any flight path might have.290

There has been significant research to understand impact and ejection events,291

and the resulting craters. Please see Vickery (1986, 1987), Popova et al.292

(2007), Melosh (1984), and Schultz and Gault (1985) for the details of this293

research. The error associated with the digitization is a combination of the294

skill, knowledge, and attention to detail of the user and the spatial resolution295

of the imagery from which the digitization is developed.296

3.2. Error Simulation297

We have run a series of Monte Carlo simulations that attempt to mimic298

the error identified in Section 3.1. The Zunil secondary crater trajectories299

were replicated 500 times, with each replication adjusting each trajectory300

between -10◦ and +10◦ sampled from a uniform random distribution. The301

trajectories themselves are shown in Figure 7 along with the simulated tra-302

jectories. Cones having 50 kilometer diameters were fit to each trajectory303

within these simulations and the overlaps were counted within a grid hav-304

ing 400 square kilometer cells. For each simulation, the grid cell containing305

the highest number of overlaps was identified then combined with the max-306

imum cell from every other iteration. This was repeated with cones having307

a diameter of 100 kilometers. If the cone is successful in compensating for308

the introduced error, the maximum cell should be consistent throughout the309

iterations and drift should be minimal.310

The two images in Figure 8 show the cells that had the maximum number311

of overlaps in at least one iteration, with the count representing the number312

18



Figure 7: Original trajectories from Zunil with trajectories of 500 error-induced simula-

tions.

of simulations where that cell was the max. Many iterations had multiple313

cells with the maximum count, so the totals are greater than 500. The red314

circle is the actual location of Zunil. In general the amount of drift in the315

maximum cells is minimal and the vast majority of iterations predict Zunil316

well. In both the 50 kilometer and 100 kilometer cone cases, the area of317

maximum overlap tends to be within a block of cells west of Zunil.318

There is a cell near 160◦ east, 0◦ north that often contains the maximum319

number of overlaps, although with increased cone size it becomes less of a320

driver. When the cone has a starting diameter of 50 kilometers, there are321

several areas of cells containing the maximum overlaps with most near Zunil.322

When the cone is increased to 100 kilometers in diameter, the maximum cells323

consolidate considerably and most of the outlying cells are eliminated.324
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(a) 50 Km Cone (b) 100 Km Cone

Figure 8: Cells having the maximum count of overlapping cones in at least one of 500

simulations that induce error. Count on each cell represents the number of simulations

where it was the maximum.

Without prior knowledge of Zunil, it is reasonable to assume that a user325

could identify it as the source crater for the secondaries in the test dataset.326

In Figure 9 the max cell per test iteration using 100 kilometer cones is shown327

with the crater database created by Robbins and Hynek (2012) which con-328

tains the location of nearly 400,000 craters having a diameter of one kilometer329

or greater. Only three craters from the Robbins and Hynek (2012) dataset330

are within a maximum cell, with Zunil being one of them. However, Zunil331

falls within a cell that is the maximum in only ten simulations. It is more332

likely that for a given iteration Zunil would not fall within the maximum cell333

but the trend of the grid cells intersection counts, as described in Section 2.3,334

would lead to an investigation of neighborhood craters. With research such335

as McEwen et al. (2003) and Preblich et al. (2007), identification of Zunil is336
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possible.337

Figure 9: Maximum cells from the 100 kilometer cone error simulation shown with craters

having a diameter over one kilometer.

3.3. Implications338

This simulation represents a first phase, best case scenario. Nearly all of339

the trajectories are based on craters known to be Zunil secondaries, so there340

is a strong bias of the trajectories to merge toward Zunil. McEwen et al.341

(2003) showed that Zunil secondaries occur in tight clusters within rays and342

thus it is likely that the amount of error here is lower than in other systems.343

This should not invalidate the ability of the cone to compensate for error.344

Cone size needs to reflect a number of assumptions which will be suited to345

the crater system being studied. Here we show that the cone of uncertainty346
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can lead to a consistent result. It should not provide pass to ignore accuracy347

requirements but provide insurance that the end result is correct.348

4. Case Studies349

As stated previously, the ability of using shapes to effectively identify350

source craters is a key measurement in assessing the effectiveness of this351

representation. In addition to the Zunil testing discussed in Sections 2 and352

3, three case studies were used to examine whether the cone of uncertainty353

can locate known source craters. In each case the LCC tool was used to create354

polyline back-projections, then a cone having a diameter of 50 kilometers at355

the trajectory starting point was created and the subsequent overlaps were356

enumerated over a grid of 400 square kilometer cells. Each case study below357

is accompanied by a map of these overlaps, with the darker shading indicating358

a higher number of intersections.359

Two of these case studies come from areas on Mars, Mare Acidalium and360

Lunae Palus, which were used by Laura et al. (2017). This provides a means361

of comparing the visual interpretation with and without the cone of uncer-362

tainty. The digitization of craters used for these regions was based on CTX363

(Malin et al., 2007) and THEMIS (Christensen et al., 2004) imagery having364

a spatial resolution of eight meters and 100 meters per pixel, respectively.365

In this paper we describe an additional case study, the entire surface of the366

moon, as an example from a separate surface and scale. The craters in the367

lunar dataset was digitized using the Wide Area Camera (WAC) (Robinson368

et al., 2011) mosaic and a Lunar Orbiter Laser Altimeter (LOLA) (Smith369

et al., 2010) derived Digital Terrain Model (DTM).370
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4.1. Acidalia371

The Mare Acidalium quadrangle lies in the northeastern plains of the372

Martian western hemisphere, bounded by 30◦ to 60◦ north latitude and 0◦
373

to 60◦ west longitude. There were a total of 44 bi-directional trajectories (88374

trajectories total) examined in Mare Acidalium based on secondary crater375

clusters whose bounding ellipse had an inverse flattening less than two. No376

minimum threshold was placed on the length of the trajectory, in order to377

keep a robust data set. The resulting cone overlap counts are shown in378

Figure 10. This data set provides the first opportunity to use the cones of379

uncertainty in a setting with multiple primary craters.380

There are two areas in Mare Acidalium that strongly suggest the existence381

of a primary crater. The first, denoted as A1, is located in the vicinity of382

29◦ west, 43◦ north and the second, denoted as A2, is located in the vicinity383

of 46◦ west, 40◦ north. These areas represent clusters of overlapping cones384

which intersect at different angles. There are areas which have higher counts385

as a result of parallel cones in close proximity. The areas northeast and386

southwest of A1 are such examples that are likely areas of contamination,387

identified from the pattern in the grid, rather than a string of primaries.388

There is likely only one or two primaries in the line from 40◦ west, 30◦ north389

to 20◦ west, 50◦ north and one is A1. From that line of concentration there390

is another line connecting it to A2. That intersection is another potential391

primary. There is likely some contamination, but here the counts are not392

continuous throughout. There are two concentrated pockets, at roughly 42◦
393

west, 38◦ north and 40◦ west, 36◦ north that potentially hold a primary.394

A final area of interest exists near 14◦ west, 39◦ north where the count is395
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not particularly high but is unique compared to the surrounding area and396

appears it is the result of trajectories from at least two directions.397

Figure 10: Grid counting overlapping cones of uncertainty in the Mare Acidalium quad-

rangle, Mars.

4.2. Lunae Palus398

The Lunae Palus quadrangle lies in the east-central region of the Martian399

western hemisphere, bounded by 0◦ to 30◦ north latitude and 45◦ to 90◦ west400

longitude. Clusters, catenae, and lineaments were back-projected using the401

LCC tool for a total of 537 bi-directional trajectories (1,074 single directional402

trajectories). No restrictions were placed on the features and all craters were403

back-projected. The resulting cone overlap counts are shown in Figure 11.404
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There are several areas in Lunae Palus that suggest the presence of a405

primary crater. The first is located near 87◦ west, 22◦ north with the highest406

number of overlaps in the entire region. The second strongest candidate is407

near 51◦ west, 3◦ north. It seems likely that there are other primaries in408

close proximity. These potentials are near 53◦ west 11◦ north, 49◦ west 8◦
409

north, and 57◦ west 5◦ north. These could be areas of cone contamination410

or viable primaries. A final area worth investigating exists near 68◦ west,411

18◦ north. These are the strongest candidates. There are likely many other412

primaries that exist in Lunae Palus given the number of grid intersections.413

This data set is unique relative to the other study sites in that the number of414

trajectories is much higher, so there could be areas with a unique localized415

count suggesting a primary that is not readily obvious upon visual inspection416

at a small scale.417

4.3. Moon418

There were a total of 4,981 secondary crater clusters, catenae, and linea-419

ments from the entire lunar surface that were back-projected using the LCC420

tool without the Coriolis Effect, then the cones were created and intersected.421

The resulting map is shown in Figure 12. There are many areas that clearly422

suggest primary craters, most notably at 20◦ west, 10◦ north and at 0◦ west,423

36◦ north. Most interestingly, and unique to this data set, is that there are424

areas of negative space where very few intersections exist. The most promi-425

nent example of this is centered at roughly 92◦ west, 22◦ south. Looking at426

the pattern of intersections around this feature, and directed away from it,427

suggests that this is an impact basin much larger than any grid cell.428
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Figure 11: Counts of overlapping cones of uncertainty in the Lunae Palus quadrangle,

Mars.

4.4. Commentary on Case Studies429

With the exception of the lunar data, the case studies presented here are430

common in that they place borders in borderless worlds. The Zunil test case431

in particular is biased in that the data are known to be related to Zunil and432

few craters independent of Zunil are presented. It may be the case that a433

study area with a wider scope makes it more difficult for primaries to be434

identified. However, we have seen in the lunar data that in a worldwide data435

set primaries are still identifiable. We caution, then, against the selection of436

a very refined study area.437
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Figure 12: Counts of overlapping cones of uncertainty across the entire lunar surface.

5. Conclusions438

In this paper we have established the cone of uncertainty as a meaningful439

tool in back-projecting secondary craters to identify source craters. The LCC440

tool extension is openly available as a Python script designed to seamlessly441

use the output from the LCC tool set. Along with the description of the442

construction of the cone the code is open to contribution and refinement.443

We have tested this LCC tool extension on three areas of Mars as well as the444

moon, and have demonstrated its ability to compensate for trajectory error,445

address the MUAP, and quantitatively assess source impact locations.446

We anticipate the application of using cones during back-projection will447

be immediately useful to anyone searching for source craters. It takes us one448

step closer in merging the worlds of impact science and crater studies for449

geological analysis. These sciences are, naturally, continually developing and450
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should unite to provide a more holistic view of past and current planetary451

bombardment. Despite this more automated, quantified view there still exists452

a strong need for human interpretation throughout the process. This paper453

serves as another tool to support that function.454

As the LCC tool was a first step in the quantification of back-projecting,455

so too is the implementation of the cone of uncertainty a first step in ac-456

counting for trajectory error. We identify four opportunities for future work457

in this area. First, the quantification of the amount of potential error in the458

trajectories would be useful quality assurance and in identifying the selection459

of the cone parameters. Second, more testing around the uncertainty should460

be undertaken. Each crater system will provide unique challenges and differ-461

ing amounts of error. Testing multiple systems, and on multiple bodies, will462

help further refine the cone parameters. Third, the cone parameters should463

be refined scientifically. This paper analyzed the problem of back-projecting464

from primarily a spatial point of view, and scientific guidelines should be465

provided to increase its usability. Finally, whether using polyline or cone466

back projections, each secondary is being associated with one or more pri-467

maries. Given the Monte Carlo simulation undertaken herein and the ability468

to use those simulations to quantify the probability of a secondary to primary469

association, we intend to explore iteratively removing secondaries from the470

analysis pool as they are associated with a primary.471
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