AN INTEGRATED APPROACH FOR OPTIMIZED LANDFILL SITE SELECTION IN KISUMU CITY, KENYA

PRESENTED BY: LOVENA OKELO COURSE: GEOG 596A OCTOBER 21, 2020 ADVISOR: BETH KING

Overview

- Project motivation
- Background
- Objective
- Methodology
- Analysis processes
- Anticipated results
- Time frame
- References

Project Motivation

- Personal experience
 - Grew up in Kisumu
 - Witnessed how waste was poorly managed
 - Understand the need for systemic change
- Shortage of GIS professionals
 - There are a few GIS experts in Kenya
 - So far, no Kenyan university offers a masters program in GIS
 - Determined to use the knowledge/skills acquired through Penn State's MGIS Program to impact change

- About Kisumu
- Problem- Inefficient Solid Waste Management System
- Affected parties
 - Community- mostly informal settlements
 - Stakeholders in waste management
 - Private stakeholders
 - Municipal Council of Kisumu

Map of the Study Area in Relation to the Vulnerable Informal Settlements

State of the Main Dumpsite (Kachok Dumpsite)

- About 4 decades old
- Waste generation has increased over time
- Dumpsite is overflowing
- Substantial risks associated with it

Stakeholders in waste management

Challenges Encountered by Stakeholders

- Financial constraints
- Poor planning
- Some waste collection areas are inaccessible
- Only 20% of the 400 tons generated daily is transported to dumpsite
- Remaining 80% piles up in residential and commercial areas

Interventions and Shortcomings

- The predicament of waste facilities in Kisumu has been acknowledged by several researchers (Awuor et al., 2019) Munala & Moirongo, 2011; Schlueter, n.d.; Sibanda et al., 2017).
- Researchers recommended several measures for sustainable waste management.
 - Waste minimization/reduction.
 - Waste recycle/reuse.
 - Waste disposal in landfills.
- Landfill siting is still challenging.
 - No researcher has employed a robust methodology for landfill siting in Kisumu.
 - Government of Kisumu is seeking to evacuate the old dumpsite to a new parcel of land.
 - So far, considerations have been based on land availability.
 - Potential problems could arise if multiple factors are not evaluated.
 - The National Environmental Management Authority (NEMA) performs environmental assessments in Kenya but has never evaluated waste disposal sites in Kisumu using GIS/MCDA integrated approach.

Project Objective

 The primary goal is to identify suitable landfill sites that optimize collection and transportation of wastes as well reduces the risks posed to human lives and the environment.

Methodology: Integrated GIS/MCDA Approach

https://storymaps.arcgis.com/stories/b60b7399f6944bca86d1be6616c178cf

AHP Pairwise Comparison Scale

Numerical Rating	Verbal Judgements or Preferences
1	Equally Preferred
2	Equally to Moderately
3	Moderately Preferred
4	Moderately to Strongly
5	Strongly Preferred
6	Strongly to very Strongly
7	Very Strongly Preferred
8	Very Strongly to Extremely
9	Extremely Preferred

(Bio et al., 2015)

With respect to AHP priorities, which criterion is more important, and how much more on a scale 1 to 9?

A - wrt AHP priorities - or B?			Equal	How much more?
1	🖲 Urban Areas	OLand Use	01	● 2 ○ 3 ○ 4 ○ 5 ○ 6 ○ 7 ○ 8 ○ 9
2	🖲 Urban Areas	○Roads	01	● 2 ○ 3 ○ 4 ○ 5 ○ 6 ○ 7 ○ 8 ○ 9
3	🖲 Urban Areas	ORivers	01	02 • 3 0 4 0 5 0 6 0 7 0 8 0 9
4	🔍 Urban Areas	OWetlands	01	02 • 3 0 4 0 5 0 6 0 7 0 8 0 9
5	🔍 Urban Areas	OSoil	01	02 03 • 4 05 06 07 08 09
6	🖲 Urban Areas	⊖Slope	01	02 03 04 • 5 06 07 08 09
7	🖲 Urban Areas	O Cultural Areas	01	02 03 04 05 •6 07 08 09
8	🖲 Urban Areas	OAirports	01	02 03 04 05 06 07 08 09
9	Land Use	\bigcirc Roads	01	● 2 ○ 3 ○ 4 ○ 5 ○ 6 ○ 7 ○ 8 ○ 9
10	Land Use	ORivers	O1	0 2 • 3 0 4 0 5 0 6 0 7 0 8 0 9
11	Land Use	OWetlands	01	02 • 3 0 4 0 5 0 6 0 7 0 8 0 9
12	Land Use	OSoil	01	02 03 • 4 05 06 07 08 09
13	Land Use	OSlope	01	0203040506070809

https://bpmsg.com/ahp/ahp-calc.php

AHP Weighting Decision Matrix

Resulting Priorities

Decision Matrix

Priorities

These are the resulting weights for the criteria based on your pairwise comparisons:

Cat		Priority	Rank	(+)	(-)
1	Urban Areas	25.3%	1	8.8%	8.8%
2	Land Use	21.7%	2	7.8%	7.8%
3	Roads	15.1%	3	4.7%	4.7%
4	Rivers	10.5%	4	3.0%	3.0%
5	Wetlands	10.5%	4	3.0%	3.0%
6	Soil	7.4%	6	3.2%	3.2%
7	Slope	5.3%	7	2.9%	2.9%
8	Cultural Areas	2.3%	8	1.1%	1.1%
9	Airports	1.8%	9	0.9%	0.9%

The resulting weights are based on the principal eigenvector of the decision matrix:

	1	2	3	4	5	6	7	8	9
1	1	2.00	2.00	3.00	3.00	4.00	5.00	6.00	7.00
2	0.50	1	2.00	3.00	3.00	4.00	5.00	6.00	7.00
з	0.50	0.50	1	2.00	2.00	3.00	4.00	5.00	6.00
4	0.33	0.33	0.50	1	1.00	2.00	3.00	6.00	7.00
5	0.33	0.33	0.50	1.00	1	2.00	3.00	6.00	7.00
6	0.25	0.25	0.33	0.50	0.50	1	2.00	6.00	7.00
7	0.20	0.20	0.25	0.33	0.33	0.50	1	5.00	6.00
8	0.17	0.17	0.20	0.17	0.17	0.17	0.20	1	2.00
9	0.14	0.14	0.17	0.14	0.14	0.14	0.17	0.50	1

Number of comparisons = 36 Consistency Ratio CR = 5.8% Principal eigen value = 9.670 Eigenvector solution: 6 iterations, delta = 9.4E-8

https://bpmsg.com/ahp/ahp-calc.php

<u>Conceptual Workflow Model</u>

DATA	TYPE	SOURCE
Land use/Land cover	TIF raster image	Regional Centre for Mapping of Resources for Development (RCMRD)
30M DEM	TIF raster image	World Resources Institute (WRI)
Soil/Geology	Esri shapefile (vector)	International Soil Reference and Information Centre (ISRIC)
Urban Areas	Esri shapefile (vector)	World Resources Institute
Waste Collection Points	CSV	National Environmental Management Authority (NEMA-KENYA)
Waste Transfer Locations	CSV	National Environmental Management Authority (NEMA)
Roads	Esri shapefile (vector)	National Environmental Management Authority (NEMA-KENYA)
Airport	Esri shapefile (vector)	National Environmental Management Authority (NEMA-KENYA)
Tourist Sites	CSV	ESRI Data Hub
Rivers	Esri shapefile (vector)	ESRI Data Hub
Wetlands	Esri shapefile (vector)	World Resources Institute
Kenya Boundary	Esri shapefile (vector)	Map Library
Kisumu Boundary	Esri shapefile (vector)	National Environmental Management Authority (NEMA)

Caption of all Datasets

Q CapstoneProjectDraft - ArcMap D \times File Edit View Bookmarks Insert Selection Geoprocessing Customize Windows Help 🗋 🚰 🔚 🖨 | % 👘 🛍 🗙 | 🄄 🍽 | 🕂 1:197,698 $\sim | | | | |$ 🖽 🇊 👼 🚳 🗁 🖕 🔍 🔍 🕅 🥝 | ३४ ६४ | 🗢 🔶 | 🕅 - 🖾 Drawing 🕶 💺 💿 🚳 | 🗔 👻 🗛 👻 🚺 🙆 Arial ✓ 9.75 ✓ B I <u>U</u> 📋 Editor • | ト 📐 乙 / 久 - ※1 🖾 臣 中 × ⑨1 🗏 🗖 🗑 🕫 🕦 🕖 厚 = R **μ**× Catalog **₽** × Table Of Contents 🗞 📮 📚 📮 🔚 🗢 🕶 🚖 🙆 🐻 🗰 🚽 🖴 🔚 🖽 🖃 *L*ayers Location: 🔚 C:\CapstoneProjectDraft \sim □ Waste_Collection_Sites 🖃 🚞 C:\CapstoneProjectDraft \mathbf{A} 0 🗉 🚞 Kisumu Municipality Kisumu_Cultural 🗄 🚞 Lovy Data 🗄 🧻 scratch.gdb Kisumu_Roads {3C9131B6-8931-46AF-88FD-7A7BC3[+ H # 99222D6C-26A7-428D-882B-4562B62 CapstoneProjectDraft.mxd 🖃 🔽 Kisumu Rivers Cultural_Buff.shp 🗄 🎆 cultural_grid E Kisumu_Airport + 🏢 cultural_rec 🗄 🎆 dem project Kisumu_Wetlands Kisumu_County_Tourist_Attraction_S Kisumu_Tourist_Sites.csv 🖃 🗹 Kisumu_Urban LandfillSuitabilityWorkflow.png 🗉 🎆 lulc 🖃 🔽 Kisumu Soils + 🎟 lulc_project 🗄 🎆 rdcost_dist Kisumu_Municipality Rivers_Buff.shp 🗄 🎆 rivers_grid 🗄 🎆 rivers_rec LANDCOVER roads_grid + Open water + slope Built up areas + ## slope_rec Vegetation aquatic or regularly flo 🗄 🎆 soil_grid 🗉 🎆 soil rec Cropland WasteCollectionAreas.csv Trees cover areas 🗄 🚞 C:\GEOG483 Shrubs cover areas E C:\GEOG484 Grassland E C:\GEOG485 Bare areas E C:\GEOG487 🖃 🗹 Slope v 🛛 🖻 😔 H 🛛 🗸 < > >

Preliminary Analysis

Mask (Environment Setting)

Multi-Ring Buffer

Cost Distance Analysis

Reclassified Thematic Maps

Anticipated Results

- Intend to produce a map that shows a contiguous classification of highly suitable to lowly suitable areas.
 - It would scrutinize multiple criteria.
 - Undesirable sites will be eliminated.
- If there are potential sites, I would present this methodology to stakeholders involved in waste management planning in Kisumu.
 - No costs would be incurred.
 - A better approach than simply considering any available parcel of land.
- Methodology would fill the research gap.

Timeframe for Completion

Oct-Dec 2020 Perform Analysis

May 2021 Conference Presentation/Journal Publication

May 2021 Graduation

References:

Awuor, F. O., Nyakinya, B., Oloo, J., Oloko, M., & Agong', S. G. (2019). How Did Kachok Dumpsite in Kisumu City Develop into a Crisis? Urban Forum, 30(1), 115–131. https://doi.org/10.1007/s12132-018-9342-7

Bio, J., Sci, E., Elahi, A., & Samadyar, H. (2015). Municipal solid waste landfill site selection using analytic hierarchy process method for Tafresh Town.

Gutberlet, J., Kain, J.-H., Nyakinya, B., Oloko, M., Zapata, P., & Zapata Campos, M. J. (2017). Bridging Weak Links of Solid Waste Management in Informal Settlements. The Journal of Environment & Development, 26(1), 106–131. https://doi.org/10.1177/1070496516672263

Munala, G., & Moirongo, B. O. (2011). THE NEED FOR AN INTEGRATED SOLID WASTE MANAGEMENT IN KISUMU, KENYA. 13, 15.

Ngusale, G. K., Oloko, M., Agong, S., & Nyakinya, B. (2017). Energy recovery from municipal solid waste. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(16), 1807–1814. https://doi.org/10.1080/15567036.2017.1376007

Ohri, A., & Singh, P. K. (2013). GIS based environmental decision support system for municipal landfill site selection. Management of Environmental Quality; Bradford, 24(5), 583–598. <u>http://dx.doi.org.ezaccess.libraries.psu.edu/10.1108/MEQ-08-2012-0056</u>

Ryan, S., Nimick, E. (2019, August 11). Multi-Criteria Decision Analysis and GIS. Retrieved September 1, 2020 from https://storymaps.arcgis.com/stories/b60b7399f6944bca86d1be6616c178cf

Schlueter, R. (n.d.). Solid Waste Management in the Developing World: The Role of Local Government in Kisumu, Kenya. 64.

Sibanda, L. K., Obange, N., & Awuor, F. O. (2017). Challenges of Solid Waste Management in Kisumu, Kenya. Urban Forum, 28(4), 387–402. https://doi.org/10.1007/s12132-017-9316-1

