INTEGRATING AMI WITH GIS FOR ELECTRIC DISTRIBUTION TRANSFORMER LOAD MANAGEMENT

Sue Ann Panton GEOG 596A | Fall 2020 Advisor | Pat Kennelly

Pennsylvania State University

Local Government GIS | 10 years *Electric Utility GIS* | 5 years

Traveling | Anywhere & Everywhere Florida Activities | Camping, Hiking, All The Water Things

Education

BS | Wildlife Ecology and Conservation MS | Organismal Biology

Certificate | Geographic Information Systems Certificate | Geospatial Programming and Web Map Development

Family

Moxie | Rescue Doberman Corwin | Leopard Gecko Bryan | Husband Extraordinaire

Sue Ann Panton GIS Analyst | Kissimmee Utility Authority

AGENDA

BACKGROUND

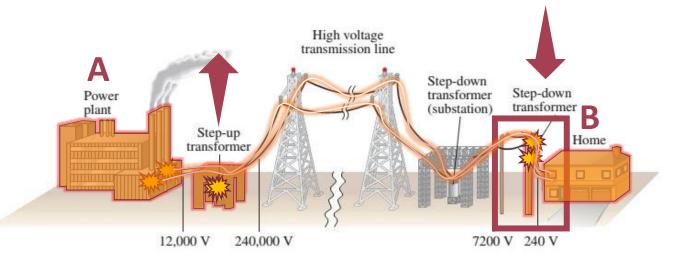
OBJECTIVES

STUDY AREA

WORKFLOW

ANTICIPATED RESULTS and DELIVERABLES

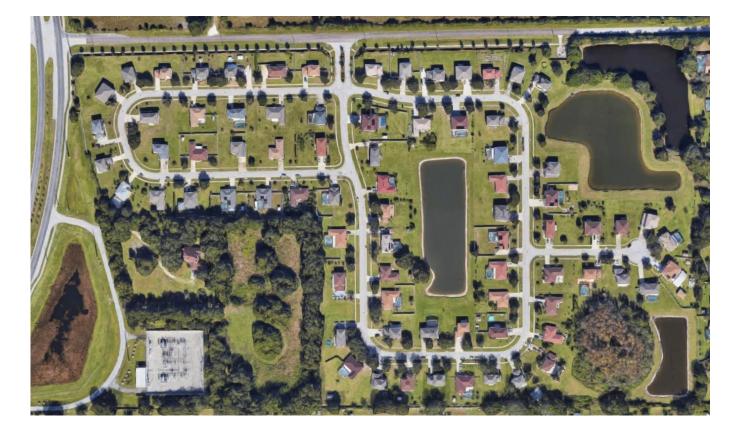
PROJECT TIMELINE



STEP-UP TRANSFORMER

Increase voltage and reduce current

STEP-DOWN TRANSFORMER


Reduces voltage before reaching end-user

Source : https://www.servostabilizer.org.in/what-is-step-down-transformer/

transformer load analysis

Analyze transformer consumption data against transformer capacity

OVERSIZED TRANSFORMER

• Excess fuel costs to the utility = \$\$

UNDERSIZED TRANSFORMER

- Life of the transformer is reduced
- Causes system outages
- Requires replacement = \$\$\$\$

electric meters

ANALOG ELECTRICITY ------ SMART METER METER

Energy consumption is collected manually on a monthly basis by a meter reader.

Utility can read, start, and stop services remotely.

Advanced Metering Infrastructure (AMI)

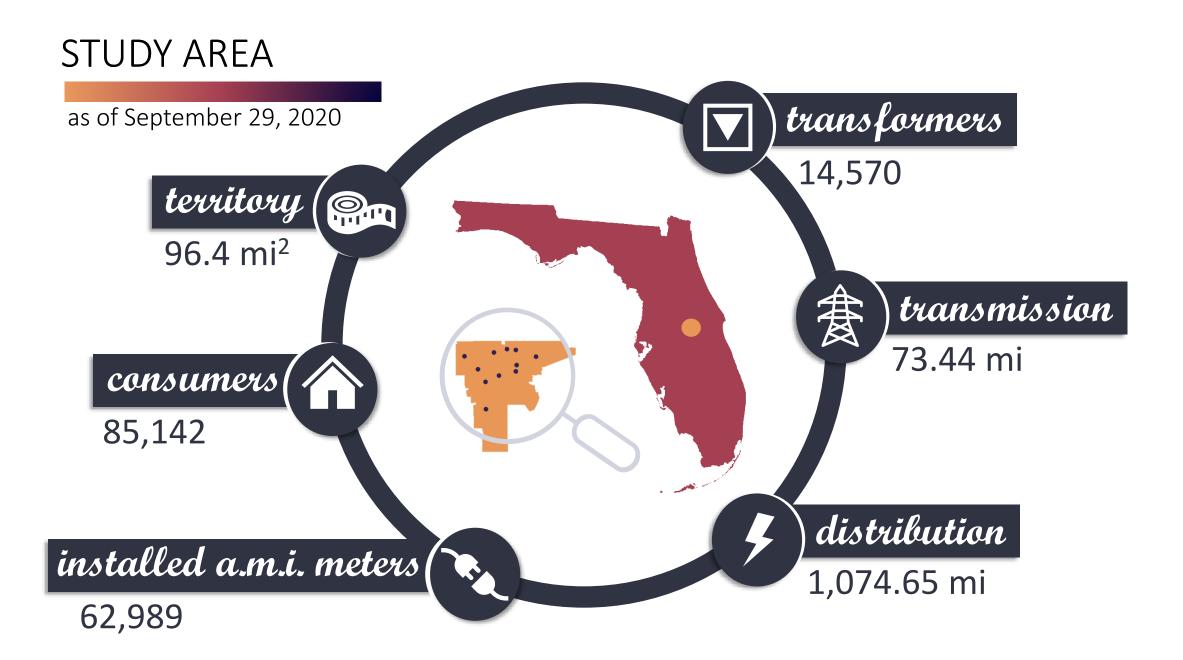
Smart meters record and transmit energy consumption to the utility throughout the day via a secure wireless network

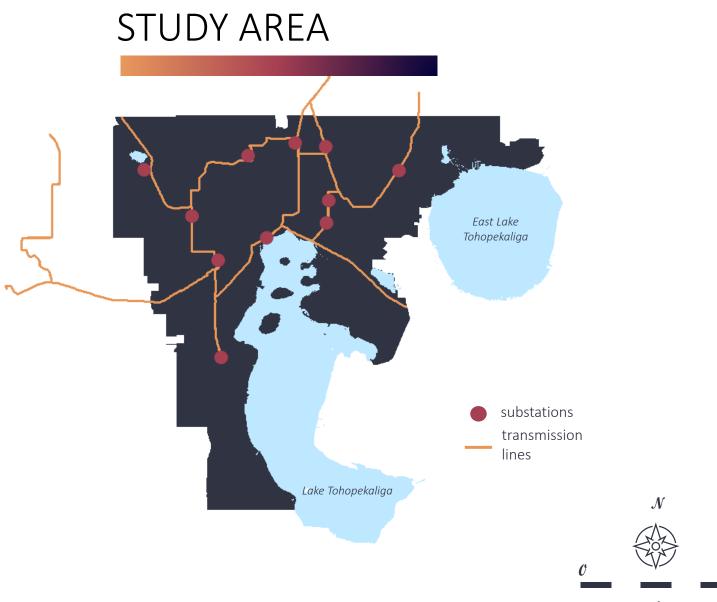
Technology Limitations Stated in Literature	Work
Cost of software and other components, requires investment in hardware and IT equipment	Ashkezari, et al. (2018)
Requires frequent data collection resulting in protocol errors and bandwidth constraints	Balakrishna & Swarup (2020)
Consolidation of big data was a time-consuming task	Guerrero-Prado, et al. (2020)
Large volumes of data lead to increased potential of data errors and confusion	Lo, Huang & Lu (2014)
Requires robust methods for managing big data and quality models	Peppanen, et al. (2015)
Big Data challenge is efficiently managing data flows	Peppanen, et al. (2016)
Hardware and software limitations exist; storing and managing data	Triplett, Rinell & Foote (2010)

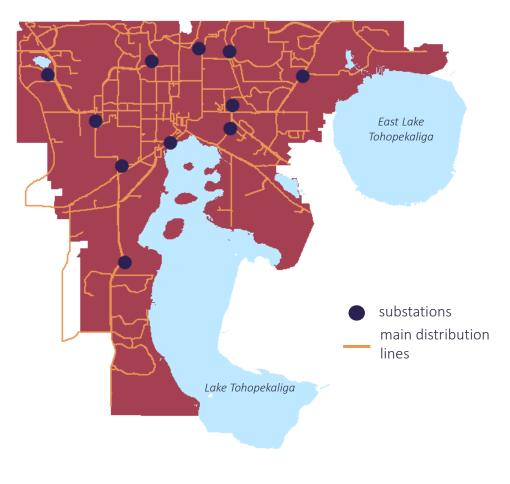
Table 1. Technologies and their limitations used to incorporate Advanced Metering Infrastructure (AMI)data within a GIS.

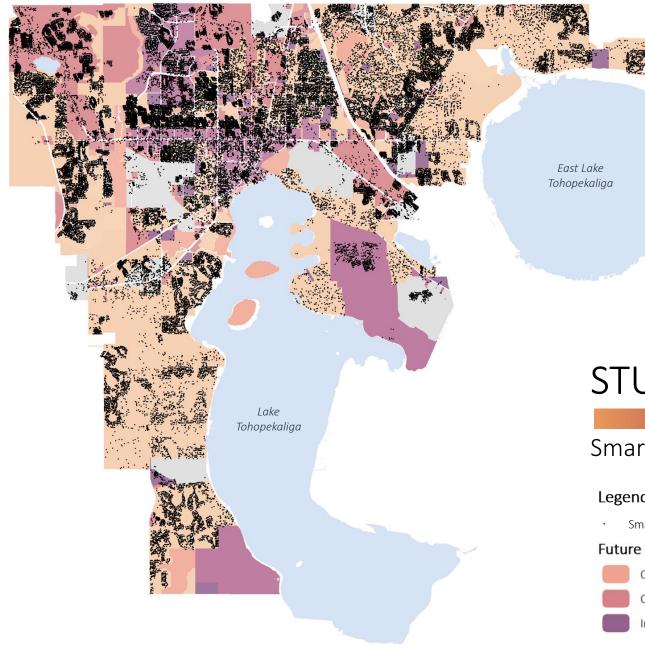
OBJECTIVES

comparative analysis


Determine if distribution engineering design standards used are still valid based on actual customer usage within areas of single-family residence.


spatial analysis


Improve criteria used when placing an appropriately sized transformer.


custom application

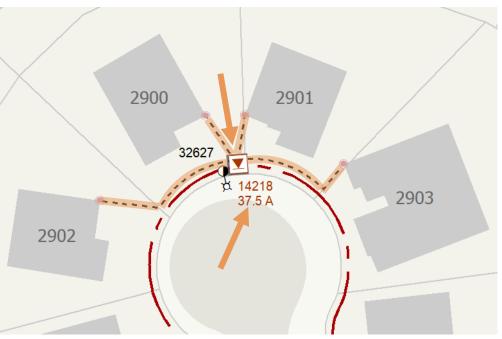
Aid our engineers in identifying areas which may require electric reconstruction to avoid future power-related issues.

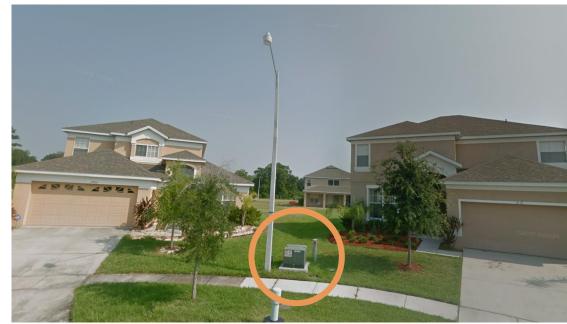
STUDY AREA

Smart Meters Overlaid on Future Land Use

Legend

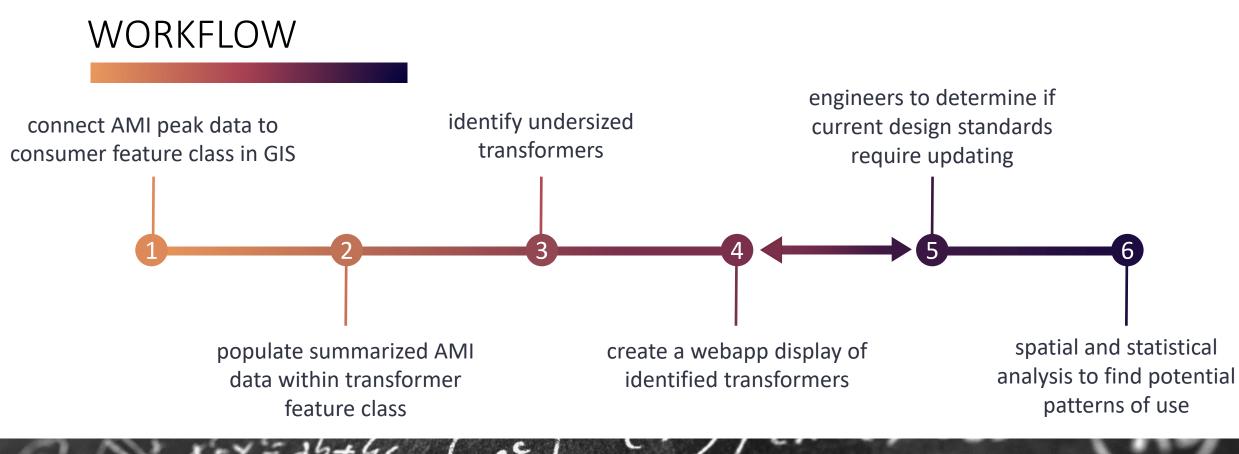
Smart Meter Installed

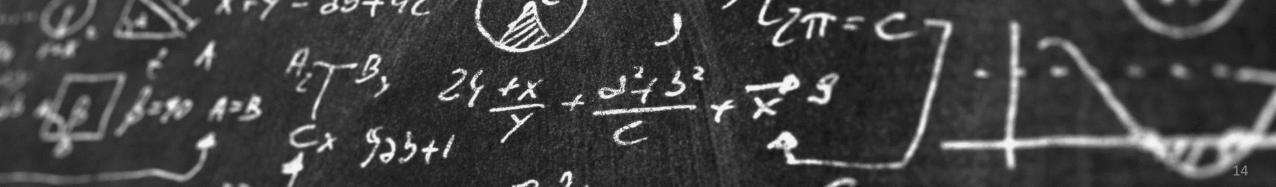

Future Land Use



CURRENT SYSTEM

GIS

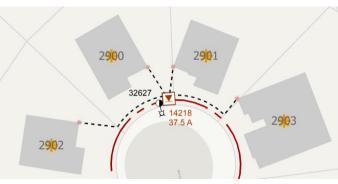




CURRENT SYSTEM

CIS (Customer Information & Billing Software)

revious Act				dd Copy	Mass Add	Refresh Sea	arch	etter Note	S/O	rtion rrangement ask	Open 🖁	Close	Audi Audi
			1111			-				111 11 11		-	
Customer	Meter Reading etters Inquiries Service Address	Contacts Notes C Customer/A	Calendar I	Emails At	pplier tachments <u>A</u> ddresses	Loans/POS Service <u>O</u> rd <u>T</u> ransaction		Capital Credit Contribution ding History	Members Contact Sumr R Bills	·	olid Waste onservation Move <u>I</u> n/C	Spreadshee Line Extensio Dut PAP/A	ons
Electric	×, • 📷 •	e Record	d 1 of 22	<u>%</u> - Ø	- 🚯	_				_	_	_	
Service	▲ Read Date ▼	Meter Re	ead Type	Read Status	Previous	Reading C	Current Reading	Multiplier 1	Multiplier 2	Days Co	onsumption	Unit Of Measu	ure
	and the statements					1229.00			0.0000000	30	39.00		
Electric	10/31/2020	Ele	lectric	Actual Read		1229.00	1268.00	1.0000000	0.0000000	50	39.00	NUT	
Electric Electric	10/31/2020 9/30/2020			Actual Read Actual Read		1149.00	1268.00		0.0000000	30	80.00		
-		Ele	lectric					1.0000000				KWH	
Electric	9/30/2020	Ele	ectric ectric	Actual Read		1149.00	1229.00	1.0000000 1.0000000	0.0000000	30	80.00	кwн кwн	
Electric Electric	9/30/2020 8/31/2020	Ele Ele Ele	lectric lectric lectric	Actual Read Actual Read		1149.00 1111.00	1229.00 1149.00	1.0000000 1.0000000 1.0000000	0.0000000 0.0000000	30 31	80.00 38.00	KWH KWH KWH	
Electric Electric Electric	9/30/2020 8/31/2020 7/31/2020	Ele Ele Ele Ele	lectric lectric lectric lectric	Actual Read Actual Read Actual Read		1149.00 1111.00 1107.00	1229.00 1149.00 1111.00	1.0000000 1.0000000 1.0000000 1.0000000	0.0000000 0.0000000 0.0000000	30 31 31	80.00 38.00 4.00	KWH KWH KWH KWH	
Electric Electric Electric Electric	9/30/2020 8/31/2020 7/31/2020 6/30/2020	Ele Ele Ele Ele Ele	lectric lectric lectric lectric lectric	Actual Read Actual Read Actual Read Actual Read		1149.00 1111.00 1107.00 1105.00	1229.00 1149.00 1111.00 1107.00	1.0000000 1.0000000 1.0000000 1.0000000 1.0000000	0.0000000 0.0000000 0.0000000 0.0000000	30 31 31 30	80.00 38.00 4.00 2.00	KWH KWH KWH KWH	
Electric Electric Electric Electric Electric	9/30/2020 8/31/2020 7/31/2020 6/30/2020 5/31/2020	216 216 216 216 216 216 216	lectric lectric lectric lectric lectric lectric	Actual Read Actual Read Actual Read Actual Read Actual Read		1149.00 1111.00 1107.00 1105.00 1105.00	1229.00 1149.00 1111.00 1107.00 1105.00	1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000	0.0000000 0.0000000 0.0000000 0.0000000 0.000000	30 31 31 30 31	80.00 38.00 4.00 2.00 0.00	KWH KWH KWH KWH KWH	
Electric Electric Electric Electric Electric Electric	9/30/2020 8/31/2020 7/31/2020 6/30/2020 5/31/2020 4/30/2020	214 214 214 214 214 214 214 214 214 214	lectric lectric lectric lectric lectric lectric lectric	Actual Read Actual Read Actual Read Actual Read Actual Read Actual Read		1149.00 1111.00 1107.00 1105.00 1105.00 1102.00	1229.00 1149.00 1111.00 1107.00 1105.00 1105.00	1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000	0.0000000 0.0000000 0.0000000 0.0000000 0.000000	30 31 31 30 31 30	80.00 38.00 4.00 2.00 0.00 3.00	KWH KWH KWH KWH KWH KWH	
Electric Electric Electric Electric Electric Electric Electric	9/30/2020 8/31/2020 7/31/2020 6/30/2020 5/31/2020 4/30/2020 3/31/2020	214 214 214 214 214 214 214 214 214 214	lectric lectric lectric lectric lectric lectric lectric lectric	Actual Read Actual Read Actual Read Actual Read Actual Read Actual Read Actual Read		1149.00 1111.00 1107.00 1105.00 1105.00 1102.00 921.00	1229.00 1149.00 1111.00 1107.00 1105.00 1105.00 1102.00	1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000	0.0000000 0.0000000 0.0000000 0.0000000 0.000000	30 31 30 31 30 31 30 31	80.00 38.00 4.00 2.00 0.00 3.00 181.00	KWH KWH KWH KWH KWH KWH KWH	
Electric Electric Electric Electric Electric Electric Electric	9/30/2020 8/31/2020 7/31/2020 6/30/2020 5/31/2020 4/30/2020 3/31/2020 2/29/2020	20 20 20 20 20 20 20 20 20 20 20 20 20 2	lectric lectric lectric lectric lectric lectric lectric lectric lectric	Actual Read Actual Read Actual Read Actual Read Actual Read Actual Read Actual Read		1149.00 1111.00 1107.00 1105.00 1102.00 921.00 823.00	1229.00 1149.00 1111.00 1107.00 1105.00 1105.00 1102.00 921.00	1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000	0.0000000 0.0000000 0.0000000 0.0000000 0.000000	30 31 30 31 30 31 30 31 29	80.00 38.00 4.00 2.00 0.00 3.00 181.00 98.00	KWH KWH KWH KWH KWH KWH KWH KWH	
Electric Electric Electric Electric Electric Electric Electric Electric Electric	9/30/2020 8/31/2020 7/31/2020 6/30/2020 5/31/2020 4/30/2020 3/31/2020 2/29/2020 1/31/2020	20 20 20 20 20 20 20 20 20 20 20 20 20 2	lectric lectric lectric lectric lectric lectric lectric lectric lectric	Actual Read Actual Read Actual Read Actual Read Actual Read Actual Read Actual Read Actual Read		1149.00 1111.00 1107.00 1105.00 1105.00 1102.00 921.00 823.00 745.00	1229.00 1149.00 1111.00 1107.00 1105.00 1105.00 1102.00 921.00 823.00	1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000	0.0000000 0.0000000 0.0000000 0.0000000 0.000000	30 31 30 31 30 31 30 31 29 31	80.00 38.00 4.00 2.00 0.00 3.00 181.00 98.00 78.00	KWH KWH KWH KWH KWH KWH KWH KWH KWH	



WORKFLOW

connect AMI peak data to consumer feature class in GIS

H|4324|1.0.0

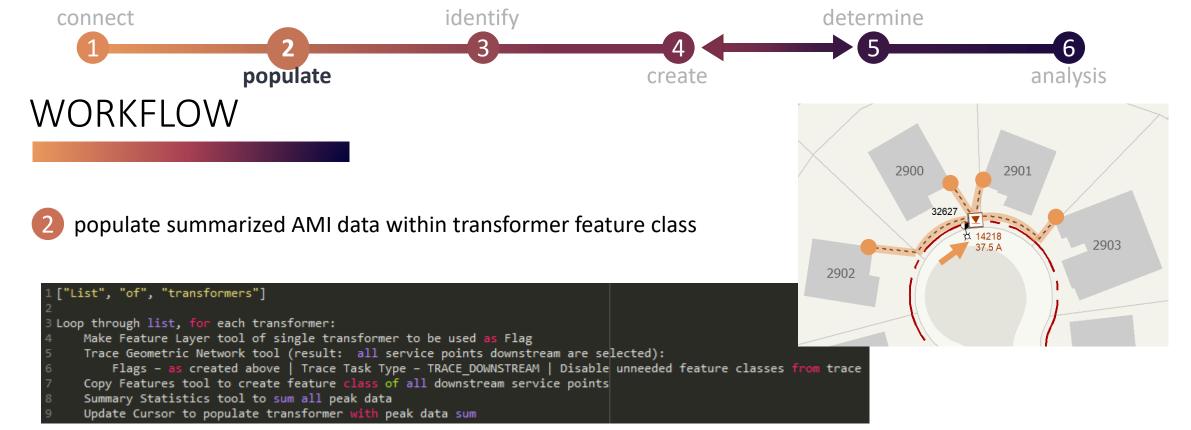
D 0149925402 123462760A 0.8.15.6.1.1.8.0.0.0.0.0.0.0.3.38.0 3.0.0 20200921062100 127.99 D|0149925402|123462760A|0.0.0.1.1.1.12.0.0.0.0.0.0.0.0.0.3.72.0|3.0.0|20200924000000|249708| D 0149925402 123462760A 0.0.0.1.19.1.12.0.0.0.0.0.0.0.0.3.72.0 3.0.0 20200924000000 162163 $\mathsf{D}[0149925403] 123461310 \mathsf{A}[0.8.15.6.1.1.8.0.0.0.0.0.0.0.3.38.0] 3.0.0] 20200919153700] 35.77]$ Join MDMS extract data to Consumer

Populate data from joined Consumer into Service Points

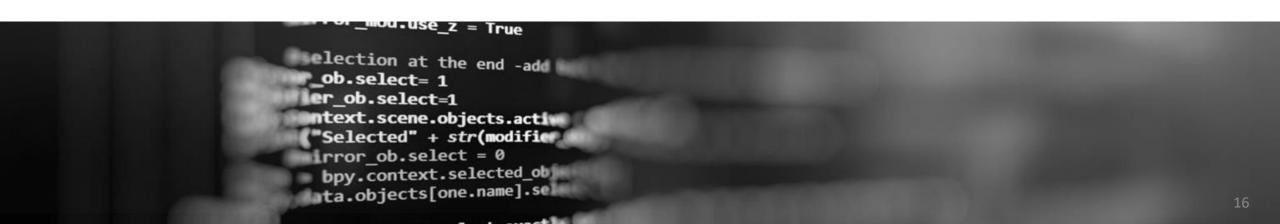
Attributes	Ψ×
🖃 🚸 Service Point	
- Standard Serv	vice Point
😑 🚸 Consume	r
÷ © 24650	0
÷- © 246520	0
-	2407
Object ID	23305
SubtypeCD	Electric Account
Account Number	246500
Service Point Object II	332
Full Account Number	000246500
Full Address	<null></null>
Phase Designation	<null></null>
ServicePoint_GlobalID	{3A021AFB-FB10-4B3B-E
Generation_GlobalID	<null></null>
CON NUMBER	246500

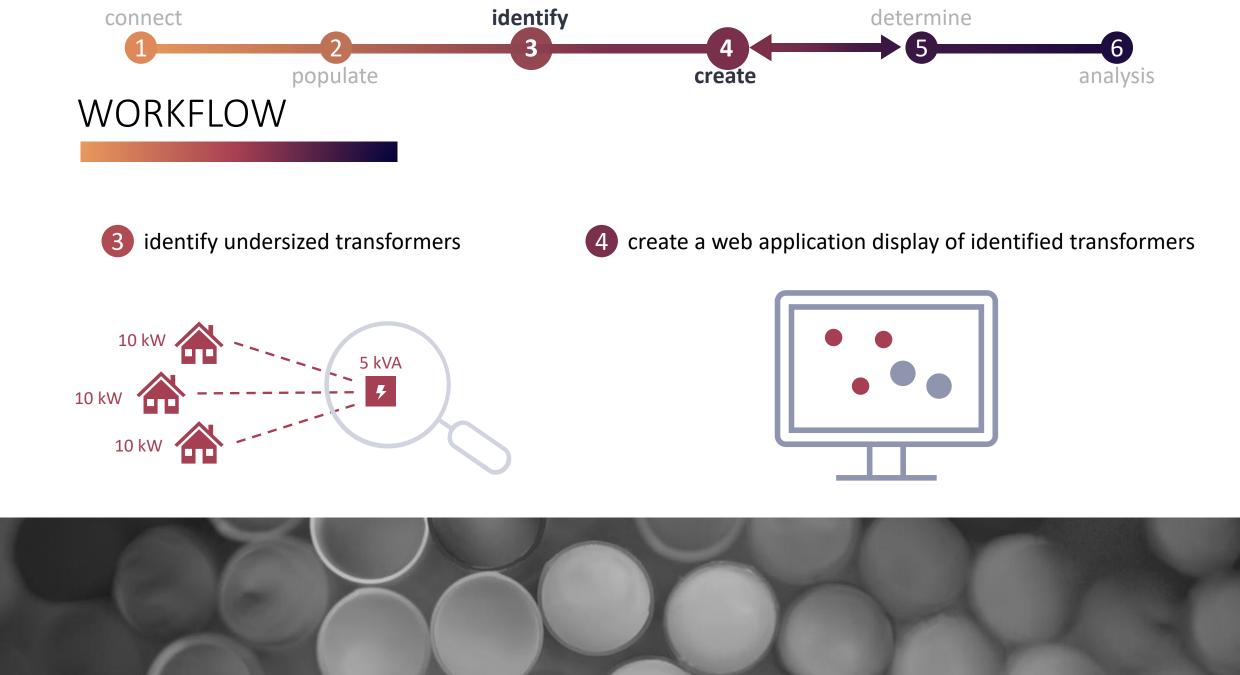
Consumer to Service Point relationship

Copy Linked Record


Updates an attribute of a feature with a value from a related table.

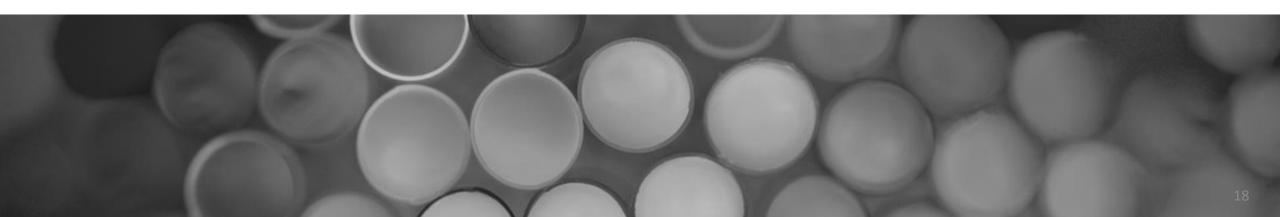
To configure this method, populate the following in the DynamicValue table:


Table Name	Field Name	Value Method	Value Info
Feature class to which value will be copied to from the source or related table	Field to store the copied value	COPY_LINKED_RECORD	Source Source Field Primary Key Foreign Key


Attribute Assistant's Copy Linked Record function



Pseudocode to populate peak data within transformer feature class



6 engineers to determine if current design standards require updating

6 spatial and statistical analysis to find pattern

- Kernel Density Estimation
- Distance Based Analysis with Monte Carlo Assessment
 - Regression Analysis
 - Chi-Square Test

WORKFLOW - DATA SETS

MDMS EXTRACT FILE

CONSUMER

TRANSFORMER

MISCELLANEOUS ELECTRIC DATASETS

ADDITIONAL DATASETS

ANTICIPATED RESULTS and DELIVERABLES

spatial & statistical analysis

Reveal patterns through exploratory analysis which will further improve criteria currently used when placing an appropriately sized transformer.

Kernel Density Estimation

Distance Based Analysis with Monte Carlo Assessment

Regression Analysis

Chi-Square Test

Equation

ANTICIPATED RESULTS and DELIVERABLES

web application

- Color-coded (Table 2) thematic map
- Show patterns of peak use
 - Identify transformers that are at high risk of power-related failure
 - Pinpoint areas requiring reconstruction

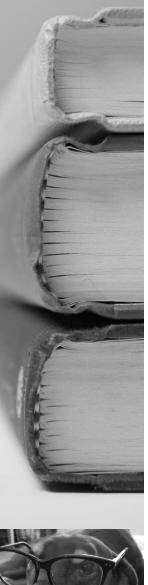
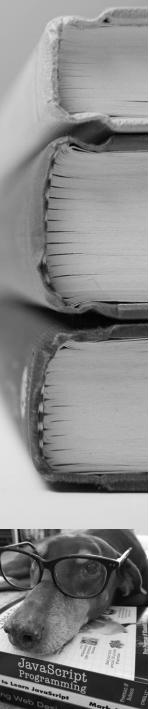

Color	Percentage Loading	Representation
Green	< 80%	Safe operation
Yellow	80% - 90%	Heavily loading operation
Orange	90% - 95%	Noticing operation
Red	95% - 100%	Warning operation
Black	> 100%	Overloading operation

Table 2. Symbology established by Su et al. (2017) for symbolizationof distribution transformer operation conditions.

PROJECT TIMELINE


PHASE 1	PHASE 2	PHASE 3	PHASE 4
JANUARY 2021	MARCH 2021	MAY 2021	JULY 2021
COMPILE & PREPARE DATA	ANALYZE DATA	BUILD APPLICATION & DEVELOP FINAL PROJECT	PRESENTATION 2021 ESRI UC

REFERENCES

- Ashkezari, A., Hosseinzadeh, N., Chebli, A. & Albadi, M. (2018). Development of an enterprise Geographic Information System (GIS integrated with smart grid). Sustainable Energy, Grids and Networks, 14, 25-34. <u>https://doi.org/10.1016/j.segan.2018.02.001</u>
- Balakrishna, P., & Swarup, K. (2020). A method of low voltage residential micro-grids management using AMI/GIS systems and its application benefits. *Renewable Energy Focus*, 32, 1-9. <u>https://doi.org/10.1016/j.ref.2019.10.004</u>
- Balakrishna, P., Rajagopal, K., & Swarup, K. (2017). Distribution automation analysis based on extended load data from AMI systems integration. *International Journal of electrical Power & Energy Systems*, 86, 154-162. <u>https://doi.org/10.1016/j.ijepes.2016.10.005</u>
- Crowe, B. (2007, February 1). Integrating AMI and GIS: The right tools for the job. *PowerGrid International*. <u>https://www.power-grid.com/2007/02/01/integrating-amr-and-gis-the-right-tools-for-the-job/#gref</u>
- ESRI. (2009). Enterprise GIS and the smart electric grid [White paper]. https://www.esri.com/library/whitepapers/pdfs/enterprise-gis-smart-electric-grid.pdf
- Guerrero-Prado, J., Alfonso-Morales, W., Caicedo-Bravo, E., Zayas-Perez, B., & Espinosa-Reza, A. (2020). The power of big data and data analytics for AMI data: a case study. Sensors (Basel), 20(11). https://dx.doi.org/10.3390%2Fs20113289
- Lo, Y., Huang, S., & Lu, C. (2014). Transformational benefits of AMI data in transformer load modeling and management. *IEEE Transactions on Power Delivery*, 29(2), 742-750. <u>https://doi.org/10.1109/TPWRD.2013.2280574</u>
- Luze, J. (2009). Distribution transformer size optimization by forecasting customer electricity load. 2009 IEEE Rural Electric Power Conference, Fort Collins, CO, 2009. <u>https://doi.org/10.1109/REPCON.2009.4919426</u>
- Miller, K. (1970). Potential benefits of a transformer load management system. [Unpublished Master's thesis]. Virginia Polytechnic Institute.

REFERENCES

- Noske, S. & Falkowski, D. (2016). GIS and AMI systems as sources of data to improve grid operation efficiency, the results of a pilot study. *Acta Energetica*, 2(27), 156-161. <u>https://doi.org/10.12736/issn.2300-3022.2016214</u>
- Nourjou, R., & Hashemipour, M. (2017). Smart energy utilities based on real-time GIS web services and internet of things. *The 14th International Conference on Mobile Systems and Pervasive Computing (MobiSPC 2017)*. <u>https://doi.org/10.1016/j.procs.2017.06.070</u>
- Peppanen, J., Reno, M., Thakkar, M., Grjalva, S., & Harley, R. (2015). Leveraging AMI data for distribution system calibration and situational awareness. *IEEE Transactions on Smart Grid*, 6(4), 2050-2059. <u>https://doi.org/10.1109/TSG.2014.2385636</u>
- Peppanen, J., Reno, M., Broderick, R., & Grijalva, S. (2016). Distribution system model calibration with big data from AMI and PV inberters. *IEEE Transactions on Smart Grid*, 7(5), 2497-2506. <u>https://doi.org/10.1109/TSG.2016.2531994</u>
- Paracha, Z., & Doulai, P. (1998). Load management: techniques and methods in electric power system. *Proceedings of EMPD '98. 1998 International Conference on Energy Management and Power Delivery*, Singapore, 1998. <u>https://doi.org/10.1109/EMPD.1998.705505</u>
- Shattuck, G., & Huff, R. (2006, October 1). Right size your transformer. *T&D World*. <u>https://www.tdworld.com/substations/article/20965990/right-size-your-transformer</u>
- Su, C., Pu, Y., Chin, H., Kuo, C., & Kuo, J. (2017). Design of transformer load monitoring systems by utilizing smart meter data. 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), Edinburgh, UK, 2017. <u>https://doi.org/10.1109/ISIE.2017.8001228</u>
- Sarfi, R., Salama, M., & Chikhani, Y. (1995). Practical aspects of performing a distribution system loss reduction study. *Proceedings 1995 Canadian Conference on Electrical and Computer Engineering*, Montreal, Quebec, Canada, 1995. <u>https://doi.org/10.1109/CCECE.1995.528100</u>
- Triplett, J., Rinell, S., & Foote, J. (2010). Evaluating distribution system losses using data from deployed AMI and GIS systems. 2010 IEEE Rural Electric Power Conference (REPC), Orlando, FL, 2010. <u>https://doi.org/10.1109/REPCON.2010.5476204</u>

QUESTIONS

SUE ANN PANTON

s x p 5 8 3 2 @ p s u . e d u

THANK YOU