Geospatial Technologies in Wilderness Search and Rescue: Potential, Challenges and Opportunities

Loren Pfau 21 September 2012 GIS in the Rockies

Agenda

1	2	3	4			
Introduction	Wilderness SAR	Geospatial Survey	Examples			
5	6	7	8			
Challenges	Conclusions	Acknowledgements	Selected References			

Introduction

- Penn State MGIS Candidate
- 11 Years of Wilderness SAR Experience
- A strong belief in the potential of geospatial technologies to enhance and change SAR

"I have never been lost, but I will admit to being confused for several weeks." – Daniel Boone

Search and Rescue

- Locating/retrieving people/objects in:
- Urban settings (e.g. EMS, law enforcement, fire)
- Water (e.g. lost watercraft (USCG))
- Land (e.g. lost aircraft (Civil Air Patrol, DoD))
- Confined space (e.g. collapsed buildings, mines)
- Wilderness focus of my study

Wilderness SAR

- Remote locations; harsh weather; difficult terrain; long access and transport times
- Limited connectivity for communications purposes
- National Parks paid professionals
- Most Everywhere Else volunteers
 - In most Western States SAR is the responsibility of the County Sheriff
 - Many SAR teams are members of the Mountain Rescue Association and are funded by donations and fundraising

SAR Incidents in USA

USA National Parks – 1992 - 2007

- Approximately 65,439 SAR missions
- Approximately 4,090 per year

Source: Heggie, 2009

Colorado between 1995-2009

- Approximately 20,672 SAR Missions
- Approximately 1,378 per year

Source: CSRB, 2009

Alpine Rescue Team Mission Counts

SAR Is Changing...

- Traditionally: a telephone call and a topo map
- Now: e911 Phase II, social media, smartphone apps, mapping GPS units, GIS, etc.
- A wealth of geospatial data becoming available but understanding of how to access and use this data is in early stages of development
- We are moving from a "Search For" to a "Go To" environment thanks to advances in geospatial technologies

... and so Must the SAR Mindset

- We have access to more and more locationbased information on subjects
- But much of the data on location comes from sources and is in formats other than what the SAR community is accustomed to using
- We need to modify our thinking about how we conduct a search using this data
- And we need new tools and expertise to help us deal with it

Geospatial in SAR Survey

Survey Conducted 2 – 22 March, 2012

- Announced via the MRA
- Conducted under the auspices of Penn Sate
- 122 started the survey; 74 completed the survey

Goals

- Ascertain what geospatial data and tools are being employed in wilderness SAR
- Identify why some tools are used and others are not
- Use information to determine ways to integrate GIS technology to improve SAR

Country	Responses
USA	67
Canada	3
Australia	1
UK	1
South Africa	1

State	Responses
СО	13
CA	7
AZ	3
MN	3
OR	3
WV	2
Georgia	2

Affiliations

Geospatial Data Standards

Standard Datum

Use of Software

Does Your Team Use Electronic Maps or GIS?

• 91% Use

• 9% Don't Use

Would You Consider Using If:

Software Packages

Use of GIS / Electronic Maps

What Types of Data Typically Used

Have you used geospatial data from any of the following sources?

How well do you understand the following technologies?

Summary of SAR

Time-sensitive

Fundamentally a Geospatial Activity

Need to Visualize, Analyze, Model, Manage and Document mission activities

Source: Koester, 2008

Examples

- Cell Phones
- Locators
- Mission Management Tools
- Analysis and Training

Cell Phones

- Wireless e911
- Pings and Tower hits
- Smartphone Apps
 - Twitter and other Social Media
 - Geotagged photo's
 - Latitude, etc.

More than 234M Mobile Phones in Use in the US

• More than 104M of these are smartphones

And What Do They Do?

Source: comScore Reports February 2012 U.S. Mobile Subscriber Market Share, 4March 2012 Top Smartphone Platforms 3 Month Avg. Ending Feb. 2012 vs. 3 Month Avg. Ending Nov. 2011 Total U.S. Smartphone Subscribers Ages 13+ Source: comScore MobiLens

	Share (%) of Smartphone Subscribers						
	Nov-11	Feb-12	Point Change				
Total Smartphone Subscribers	100.0%	100.0%	N/A				
Google	46.9%	50.1%	3.2				
Apple	28.7%	30.2%	1.5				
RIM	16.6%	13.4%	-3.2				
Microsoft	5.2%	3.9%	-1.3				
Symbian	1.5%	1.5%	0.0				

Mobile Content Usage 3 Month Avg. Ending Feb. 2012 vs. 3 Month Avg. Ending Nov. 2011 Total U.S. Mobile Subscribers (Smartphone & Non-Smartphone) Ages 13+ Source: comScore MobiLens

	Share (%) of Mobile Subscribers							
	Nov-11	Feb-12	Point Change					
Total Mobile Subscribers	100.0%	100.0%	N/A					
Sent text message to another phone	72.6%	74.8%	2.2					
Used downloaded apps	44.9%	49.5%	4.6					
Used browser	44.4%	49.2%	4.8					
Accessed social networking site or blog	33.0%	36.1%	3.1					
Played Games	29.7%	32.3%	2.6					
Listened to music on mobile phone	21.7%	24.8%	3.1					

Wireless e911

- Phase I
 - Calling number, name and tower information
- Phase II
 - Adds latitude and longitude information
 - "Wireless phones relying on network-based technology must provide Public Safety Answering Points (PSAP) with reports on their locations within 100 meters of accuracy for 67 percent of calls, and within 300 meters for 95 percent of calls, by Sept. 11, 2012, according to the order. Phones installed with GPS chips, meanwhile, must provide PSAPs with reports on their locations within 50 meters of accuracy for 67 percent of calls, and within 100 meters for 95 percent of calls, by the same date. The FCC also specified certain benchmarks to measure the carriers' progress, such as meeting the location accuracy requirements in at least 75 percent of PSAPs a carrier serves by 2010." - FCC E911 Location Accuracy Second Report and Order in PS Docket No. 07-114

e911 Tests – Clear Creek County

Real Life Results

What can you do if you only know the tower?

T Tower

Image Clear Creek County Covit. 39°38'49.75" N 105°38'58.93" W elev 114821

© 2012 Googla

Google earth

Eye alt 18.35 mi

Source: Civil Air Patrol Briefing on Alpine Search for missing hiker 18 July 2012

Evans-Bierstadt Viewshed

Source: Civil Air Patrol Briefing on Alpine Search for missing hiker 18 July 2012

SPOT, InReach and PLB's

Apps and Geotagging

Smartphone activities

% of adult smartphone owners who use their phones to do the following social activities

	% of smartphone owners who do this
Send or receive text messages	92%
Take a picture	92
Send a photo or video to someone	80
Send or receive email	76
Access a social networking site	59
Get location-based directions or recommendations	55
Post a photo or video online	45
Access Twitter	15
Participate in a video call or video chat	13
Use a geosocial service like Foursquare or Gowalla	12

Source: The Pew Research Center's Internet & American Life Project, April 26 – May 22, 2011 Spring Tracking Survey. n=688 adult smartphone users ages 18 and older. Interviews were conducted in English and Spanish, by landline and cell phone.

a D C	B
SRG	в
JPEG	Quality
96 (4	111)
GPS L	atitude
39 3	5.3\'0" N
GPS L	ongitude
105	20.9\'0" W
Unique	ID
dc4d	691a30704f9e00000000000000000000000000000000000
X Res	olution
72	
Y Res	olution
72	
Resolu	ition Unit
Inch	es
Softwa	ITO
434	
VOLO	Building
Con	Positioning
0011	10100
ISO	
64	
Comp	onents Configuration
{4 b)	rtes}
Shutte	r Speed
4.32	
Subje	t Area
102	767 614 614

Virtual clues in the form of geospatial data can be as important a physical clues in a search

Mission Management

- MapSAR
- Ad hoc tools such as the avalanche danger predictor
- Online tools such as ArcGIS Explorer Desktop and Online
- Tablet apps and storage

MapSAR

Sophisticated, ArcGIS-based geospatial tool to aid wilderness SAR mission management

- Developed by the SAR community and ESRI
 - National Parks
 - Several SAR Teams
- Incorporates
 - Team / Asset Management
 - Documents Assignments and Clues
 - Search Theory
 - Lost Person Behavior

Avy Danger Example – Risky areas based on Slope, Aspect and Elevation

- CAIC Danger Rose
- DEM
- USGS Topo
- Custom Danger Map for Areas of Interest

ArcGIS Online Used to Share Mission Data – Lost Mountain Biker

Tablets...

Preparation, Analysis and Training

- Examples of the Alpine 4-year mission database
- Post-Mission Debriefing and Sharing
- Non-traditional Data Sources

Historical Mission Locations: 2008-2011

							totsrc	plsutmea	plsutmno		fndutme	fndutmn							Indmobil	Indrespo
day	mo	yea	ar incidtype	personcat r	nopel Age	e Sex	htime s	st i	rth	elev	ast	orth	fndelev	plsdistm	diffelev	fndby	fndfeat	perstat	е	nse
28	9	20	10 search	hiker	1	64 f	1	460330	4392020	3484.0	456720	4392230	3303.0	3616.1	181.0) hasty te	ean ridge	uninjured	mobile	responsive
23	- 7	20	11 search	hiker	1		1	442610	4381300	4239.0	439000	4382900	3553	3948.7	686.0) law enfo	orceroad	uninjured	mobile	responsive
27	8	20	11 rescue	hiker	1	66 m	1				440660	4382390	3576			hasty te	ean trail	uninjured	mobile	responsive
27	8	20	11 rescue	hiker	1	32 f	1				440660	4382390	3576			hasty te	ean trail	uninjured	mobile	responsive
3	8	20	09 rescue	hiker	1	24 m	1				444720	4409490	3324			bystand	lers snowfield	injured	immobile	responsive
9	- 7	20	08 rescue	hiker	1	f	1				444790	4409450	3297			bystand	lers snowfield	injured	immobile	responsive
28	8	20	10 rescue	mountain t	1	35 f	1.25				468451	4389824	2389.0			hasty te	ean trail	injured	immobile	responsive
2	3	20	10 rescue	hiker	1	m	1.5				425100	4390970	3700.0			friends	slope	injured	immobile	responsive
30	5	20	10 missing pe	hiker	2	m,f	1.5	448070	4389930	3231.0	449500	4390030	3284.0	1433.5	-53.0) bystand	lers road	uninjured	mobile	responsive
10	6	20	10 missing pe	hiker	1	41 m	1.5	451510	4391310	3366.0	450090	4390600	3327.0	1587.6	39.0) confiner	mei road	uninjured	mobile	responsive
13	8	20	11 rescue	hiker	1	17 m	1.5				457180	4398720	2355			bystand	lers slope	uninjured	mobile	responsive
6	9	20	09 rescue	ATV rider	2 58,	62 m, m	1.5				442200	4404100	3059			self	trail	injured	immobile	responsive
6	9	20	09 search	hiker	1	26 f	1.5				452090	4389910	2855			hasty te	ean trail	uninjured	mobile	responsive
13	9	20	08 rescue	despondar	1	16 f	1.5				438520	4383240	3551			bystand	lers cliff	uninjured	mobile	responsive

Missions with Lost and Found Locations

Mission Connectivity and Routes

Glene

G

Ce

Post-Mission Debriefing and Analysis

Additional Data Sources

- Climbing and hiking forums such as 14ers.com
- Trails shared on Open Street Map
 - Geocaching logs

Challenges

So, new geospatial data and GIS has the potential to be a game changer in SAR

But there are...

- Education needs
- Tool needs
- Expertise that is lacking on SAR teams
- Money (as in lack of)

Conclusions

- The types, volumes and sources of geospatial data of use to wilderness SAR are rapidly increasing and can be overwhelming
- These new data sources have the potential to improve SAR outcomes IF teams can capitalize upon them
- The SAR community needs help from the GIS community in the form of time, expertise and tool development

In the meantime....

Conclusions

Geospatial information can be used by SAR at different levels

Questions?

Acknowledgments

- Dr. Justine Blanford
- Alpine Rescue Team
- Mountain Rescue Association

Selected References

- Penn State MGIS Program <u>https://gis.e-</u> education.psu.edu/mgis
- MRA <u>www.mra.org</u>
- NASAR www.nasar.org
- MapSAR <u>www.mapsar.net</u>
- Alpine Rescue Team -<u>http://www.alpinerescueteam.org/</u>
- Colorado Search & Rescue Board -<u>http://www.coloradosarboard.org/</u>

Thank You

"It is far better to be lost and know it, than to confidently believe you are somewhere that you are not."

 Tristan Gooley in "The Natural Navigator: A Watchful Explorer's Guide to a Nearly Forgotten Skill"

Loren Pfau lorenpfau@gmail.com 720-244-4365