Candidate: Neil S. Rose, GISP

Advisor: Ryan Baxter

Understanding Faulty Data

Methods to Capture, Report, and Score Data Cleanliness

Who am I?

Neil S. Rose, GISP

GIS Manager, City of New Braunfels, TX

- BA Sociology
- BA Applied Geography
- Grad Cert, GIS
- Grad Cert, Geospatial Programming
 and Web Map Development

- 8 years in local government GIS
- Employs a high level of python scripting
- Automate, automate, automate
- Professional interest in data cleansing automation

The Agenda

Introduction and Background

What is data? Why is it important? How does it live? What makes data good or bad?

Goals, Objectives, Methodologies

Identify, report, and score data cleanliness using python solutions

Anticipated Results

What will work? What won't?

Project completion and presentation

Introduction and Background

What is data? Why is it important? How does it live? What makes data good or bad?

What is "data"?

Data quantifies or qualifies a phenomena	 Temperature, location, cost, distance, color
Data != Information	 Information is derived from the analysis and interpretation of data
GIS data isn't special, only spatial	 Vector and raster data structures
Vector consists of points, lines, and polygons	 Acquired by heads up digitization or device capture
Raster consists of a grid of values	 Represents a continuous view of real-world phenomena
Attributes contextualize the spatial	 Non-spatial data that describes the spatial feature

Why is data important?

Stop molehills Make informed Improve from turning people's lives decisions into mountains Get the results Find solutions Back up your to problems arguments you want Stop the Be strategic in Know what guessing you're doing your approaches well game Access the Keep track of Make the most resources it all of your money around you

Council on Quality and Leadership

From planning to destruction, the lifecycle of data

Data Planning

Data Generation

Data Collection or Acquisition

Data Processing

Data Storage or Preservation

Data Management

Data Analysis

Data Publishing or Sharing

Data Visualization

Data Interpretation

Continual Actions

Archiving/Destruction

HARVARD DATA SCIENCE REVIEW

Data Planning

Data Planning

Data Generation

Data Collection or Acquisition

Data Processing

Data Storage or Preservation

Data Management

Data Analysis

Data Publishing or Sharing

Data Visualization

Data Interpretation

Continual Actions

Archiving/Destruction

The First Step

- Why is the data important?
- How is it being collected?
- How will it be stored?
- Determine data parameters
 - Schema
 - Storage
 - Access
 - Maintenance

Data Generation, Collection, or Acquisition

Data Planning

Data Generation

Data Collection or Acquisition

Data Processing

Data Storage or Preservation

Data Management

Data Analysis

Data Publishing or Sharing

Data Visualization

Data Interpretation

Continual Actions

Archiving/Destruction

Generation

- Generating data is more applied to big data
- Large, unstructured datasets
- Doesn't work well for GIS without data wrangling
- Not considered a core phase of the data lifecycle

Collection/Acquisition

- Data collected through field operations, digitization, or from an external source
- Field operations and digitization draw directly from Data Planning
- Acquisition may require data wrangling

Data Processing

Data Planning

Data Generation

Data Collection or Acquisition

Data Processing

Data Storage or Preservation

Data Management

Data Analysis

Data Publishing or Sharing

Data Visualization

Data Interpretation

Continual Actions

Archiving/Destruction

Also known as...

- Data wrangling
- Data preparation
- Data munging

How to process data...

- Transforms raw data into desired data through:
 - Cleaning
 - Structuring
 - Enriching
- Differs from data cleansing

Data Storage or Preservation

Data Planning

Data Generation

Data Collection or Acquisition

Data Processing

Data Storage or Preservation

Data Management

Data Analysis

Data Publishing or Sharing

Data Visualization

Data Interpretation

Continual Actions

Archiving/Destruction

Outside of data planning...

- Builds data storage based on generated and wrangled data
- Can result in schema, field naming, accuracy, precision, and naming convention errors
- Not considered a core phase of the data lifecycle

Data Management

Data Planning

Data Generation

Data Collection or Acquisition

Data Processing

Data Storage or Preservation

Data Management

Data Analysis

Data Publishing or Sharing

Data Visualization

Data Interpretation

Continual Actions

Archiving/Destruction

Jeanette Wing

- Optimized storage process
- Varies based on data generated
- Not considered a core phase of the data lifecycle

Sanborn	

- Analysis
- Data updates
- Not considered a core phase of the data lifecycle

Data Analysis

Data Planning

Data Generation

Data Collection or Acquisition

Data Processing

Data Storage or Preservation

Data Management

Data Analysis

Data Publishing or Sharing

Data Visualization

Data Interpretation

Continual Actions

Archiving/Destruction

Creates new data...

- Through analysis, derivative data is created
- Initial data input is not changed
- Not considered a core phase of the data lifecycle (but is closely related)

Data Publishing or Sharing

Data Planning

Data Generation

Data Collection or Acquisition

Data Processing

Data Storage or Preservation

Data Management

Data Analysis

Data Publishing or Sharing

Data Visualization

Data Interpretation

Continual Actions

Archiving/Destruction

Providing access to data...

- Whether by open data, ftp, REST, or other means of sharing
- Data can be viewed, downloaded, and accessed
- Data doesn't change
- Not considered a core phase of the data lifecycle

Data Visualization

Data Planning

Data Generation

Data Collection or Acquisition

Data Processing

Data Storage or Preservation

Data Management

Data Analysis

Data Publishing or Sharing

Data Visualization

Data Interpretation

Continual Actions

Archiving/Destruction

Seeing the data...

- Symbolizes the data, whether on a map, chart, or graph
- The data doesn't change
- Not considered a core phase of the data lifecycle

Data Interpretation

Data Planning

Data Generation

Data Collection or Acquisition

Data Processing

Data Storage or Preservation

Data Management

Data Analysis

Data Publishing or Sharing

Data Visualization

Data Interpretation

Continual Actions

Archiving/Destruction

What does it all mean?

- Provides explanation to data analysis and visualization
- The data doesn't change
- Not considered a core phase of the data lifecycle

Continual Actions

Data Planning

Data Generation

Data Collection or Acquisition

Data Processing

Data Storage or Preservation

Data Management

Data Analysis

Data Publishing or Sharing

Data Visualization

Data Interpretation

Continual Actions

Archiving/Destruction

Repeatable processes...

- Describe data
 - Metadata creation
 - Data dictionaries
 - Data discovery
- Data cleansing
 - "ensures that data are properly collected, handled, processed, used, and maintained at all stages" USGS

• Data security

- Backups
- Cyber security

Archiving/Destruction

Data Planning

Data Generation

Data Collection or Acquisition

Data Processing

Data Storage or Preservation

Data Management

Data Analysis

Data Publishing or Sharing

Data Visualization

Data Interpretation

Continual Actions

Archiving/Destruction

The Last Step

- What to do with data when it's being replaced or becomes irrelevant?
- None of the sources reviewed discussed this step
- Depends on organizational policies and practices

How to...

- There are several ways to archive or destroy data:
 - Stored as a read-only
 - Transferred to external media
 - Server snapshot
 - Deleted
- Census vs Municipal

Data Planning

Data Acquisition

Data Wrangling

Maintenance Operations

Data Archival and Destruction

- Having bad data results in bad analyses, maps, interpretations, and results
- This can be prevented by utilizing data maintenance operations:
 - Backups
 - Prevents loss of data caused by degradation, accidents, corruption, or malicious actions
 - Documentation
 - Metadata creation and management
 - Data dictionaries
 - Keyword data discovery
 - Quality management
 - Data cleansing
 - In-place tools
 - Scheduled operations

Garbage In, Garbage Out

Having data is good, having good data is better

Existing Tools

Topology Domains Rules set by the user Set inputs for specified to define a geospatial fields relationship Data Reviewer Attribute Assistant Semi-automated data Aids users in data review to identify entry based on errors and issues intersecting features

Goals, Objectives, Methodologies

Identify, report, and score data cleanliness

Identify Known Issues

- Naming conventions
- Field name truncation
- Alias utilization
- Field attribute policies
 - NULL vs blank or 0
 - Empty data
 - Domain likeness, duplication, use
 - Field type vs data entered
- Metadata

- Bad/illegal characters
- Leading and ending spaces
- Double (or more) spaces
- Mixed coordinate systems
- Reserved words
- Hosted feature last edits
- Published feature metadata
 - Naming, summary, description, terms of use, tags, credits

Your input needed!

- Don't see an issue you deal with on this list?
- Let me know about it!

Determine Solutions for Reporting Known Issues

Conceptual Solution Examples

Reserved Words

- Using python and arcpy to compare a list of field names to the list of reserved words
- Using a looped if-then statement to flag uses of any reserved words

Naming Conventions

- Types of cases...
 - flatcase
 UPPERFLATCASE
 lowerCamelCase
 UpperCamelCase
 snake_case
 SCREAMING_SNAKE_CASE
 Camel_Snake_Case
- Using python, regex, arcpy, and machine learning to identify whether the naming convention matches the user-selected convention

Mixed Coordinate Systems

 Using python and arcpy to describe the spatialReference property and flag datasets that don't match the user-selected coordinate system

Scoring Cleanliness, Summary Report and Appendix

Flag and report the issues

- The tool will flag all known issues based on what the user wanted to run
- A summary report template will be filled in with the appropriate data about the issues observed

Scoring cleanliness of data

- Using the reported issues, score the cleanliness of data
- Not yet determined formula for weighting and scoring issues, errors, and inconsistencies

Provide appendix of issues

- To aid the user, an appendix of all issues will be generated
- The appendix will include feature dataset, feature, field name, and OID, grouped by issue

Anticipated Results

What will work? What won't?

Timeline

Project completion and presentation

Timeline

From starting proposal to potential presentation venues

The Big Geospatial Data Management Lifecycle. (2018, October 17). Retrieved August 21, 2020, from https://www.sanborn.com/the-big-geospatial-data-management-lifecycle/

CQL. (2020, July 27). 12 Reasons Why Data Is Important. Retrieved September 25, 2020, from <u>https://www.c-q-</u> <u>l.org/resources/guides/12-reasons-why-data-is-important/</u>

Data Management. (n.d.). Retrieved August 21, 2020, from <u>https://www.usgs.gov/products/data-and-tools/data-management/data-lifecycle</u>

Dempsey, C. (2017, May 1). Types of GIS Data Explored: Vector and Raster. Retrieved September 25, 2020, from https://www.gislounge.com/geodatabases-explored-vector-and-raster-data/

ESRI. (2010). ArcGIS Geodatabase Topology Rules. Retrieved October 08, 2020, from http://resources.arcgis.com/en/help/main/10.2/01mm/pdf/topology_rules_poster.pdf

ESRI. (n.d.). Attribute Assistant. Retrieved October 09, 2020, from <u>https://solutions.arcgis.com/shared/help/attribute-assistant/documentation/</u>

ESRI. (n.d.). Get started with Data Reviewer. Retrieved October 09, 2020, from <u>https://pro.arcgis.com/en/pro-app/help/data/validating-data/get-started-with-data-reviewer.htm</u>

ESRI. (n.d.). Introduction to attribute domains. Retrieved October 09, 2020, from <u>https://pro.arcgis.com/en/pro-app/help/data/geodatabases/overview/an-overview-of-attribute-domains.htm</u>

ESRI. (n.d.). What is raster data? Retrieved September 25, 2020, from https://desktop.arcgis.com/en/arcmap/latest/manage-data/raster-and-images/what-is-raster-data.htm

Eynden, V. V. (2011). *Managing and sharing data: Best practice for researchers*. Colchester, Essex: UK Data Archive. Fagin, S., & Ommen, A. (2017, February). The Importance of Data Quality Within Your Organization [Scholarly project]. In ESRI Proceedings. Retrieved September 18, 2020, from https://proceedings.esri.com/library/userconf/fed17/papers/fed_29.pdf

Jasuja, N., T, K., Sehgal, P., & amp; S, P. (n.d.). Data vs Information. Retrieved September 25, 2020, from https://www.diffen.com/difference/Data_vs_Information

Rouse, M. (2008, March 12). What is garbage in, garbage out (GIGO)? Retrieved September 25, 2020, from https://searchsoftwarequality.techtarget.com/definition/garbage-in-garbage-out

Sadler, C. E., Glass, A., & amp; Doyle, A. C. (1981). Sir Arthur Conan Doyle's The Adventures of Sherlock Holmes. New York, NY: Avon Books.

Wing, J. M. (2019). The Data Life Cycle. Issue 1 Harvard Data Science Review. doi:10.1162/99608f92.e26845b4

Questions? Thank You

Neil S. Rose, GISP

🖂 nsr8@psu.edu