Annalisa Saqui 596A Capstone Proposal December 18, 2017

Graduate Faculty Advisor: Dr. Pat Kennelly Mitigating Wastewater Odor Impacts Using Sensory and Modeled Observations

Presentation Overview

- Background
- Problem and Objective
 - 1. Collection System
 - 2. Treatment Plants
 - Previous Work and Proposed Methodology
- Anticipated Results
- Timeline
- References

Odor Generation in Sewers

- Main cause of odor and corrosion problems in sewer systems is hydrogen sulfide (H₂S)
- Gas produced in sewers is a mixture of toxic and non-toxic gases due to the decomposition of organic wastes in sewage
- Sewer gas can contain nitrogen, oxygen, carbon dioxide, hydrogen sulfide, ammonia, and methane
- Foul odors can also be caused by organic gases such as Volatile Organic Compounds (VOCs)

Hydrogen Sulfide (H₂S) Production in Sewers

- Inorganic gas
- Detectable at low odor thresholds (.001 - .01 ppm)
- Rotten egg smell, does not easily disperse in the atmosphere
- Bacteria use up oxygen in decomposing organic matter
- Reduce sulfate (SO₄) to sulfides (SO₂)
- Sulfides can't be oxidized so they combine with hydrogen to create hydrogen sulfide (H₂S)

- Warm climates higher wastewater temperature
- Sewers with flat grade/low slope (less than 2 feet/sec velocity)
- Long detention times
- Wastewater turbulence drops, sharp bends, slope reductions in collection system
- H₂S odors can escape through unsealed manholes, vents, pump station wet wells, and during maintenance or construction activities
- Leads to pipe corrosion

Odor Emissions at Treatment Plants

- Plants have several interconnected mechanical, biological, and chemical processes that support the treatment of wastewater
- Wastewater at each stage differs in physical and chemical properties
- Two main processes in the plant
 - wastewater treatment
 - solids handling
- Odor control facilities treat foul air from processes
- Different groups of air pollutants can be generated and emitted through inlet or outlet sources
- Odors can mask each other, making identification and quantitative determination of specific odorous compounds complex

Common Perceptions of Odor

Wastewater Odors

Odor Category Odor Characte		Chemical Compounds		
Ammonia/Fishy	Ammonia Pungent Cat Urine Fishy	-Ammonia -2,4-Decadienal -2,4-Heptadienal -Trimethylamine		
Oxidant/Chlorinous	Chlorinous	-Chlorine -Monochloramine -Dichloramine		
Fecal/Sewery	Fecal Manure Sewery	-Indole -Skatole -Valeric Acid		
Earthy/Moldy/Musty	Earthy/Musty Moldy	-Geosmin -2-Methylisoborneol -2,4,6-Trichloroanisole		
Rancid/Putrid	Yeasty, Sour Milk, Rancid Fatty/Oily , Sweaty, Sour Cheese Putrid Decayed	-Heptanal -Pyridine		
Sulfide/Cabbage Garlic	Decaying Vegetation Rotten Eggs Garlicy, Canned Corn Marshy/Swampy Rotten Cabbage Skunk, Burnt Rubber Sulfidy Coffee Grounds	-Hydrogen Sulfide -Allyl mercaptan -Dimethylsulfide -Dimethyl trisulfide -Dimethyl disulfide -Methyl mercaptan		

Investigating Odor Complaints

Area of Interest

- Orange County, CA
- Orange County Sanitation District (OCSD)
 - Regional wastewater agency
 - Serves 2.6 million people in central and northwest regions
 - 471 square-mile service area
 - Collection System
 - 400 miles of trunk sewers
 - 4640 manholes
 - Reclamation Plant No. 1 97 MGD
 - Fountain Valley, CA
 - Treatment Plant Plant No. 2 103 MGD
 - Huntington Beach, CA

Odor Complaint Data

- OCSD Control Center at Plant No. 1 receives calls from residents in service area to report issues related to plant or sewer facilities
- 565 odor-related calls logged (2012 2017)
- A response is made depending on the location of the complaint:
 - Treatment plant: within 1 hour
 - Collection System: within 1 working day
- OCSD 5-year strategic plan outlines Level of Service (LOS) for Odor Control
 - 2015 LOS: 28 or less odor complaints attributed to OCSD

Odor Impact Assessment: Collection System

- Problem: Complaints are received from citizens within service area but may not be sourced from OCSD collection system assets
- Odor investigation can involve several actions:
 - a) Review maps to determining if location of complaint is "near" OCSD sewer system or local sewer system
 - b) Review historical complaints in the area
 - c) Perform field assessment of all OCSD assets for odors within the vicinity of the complaint
 - d) Refer complaint response to appropriate local sewer authorities (if non-OCSD source)
- Response time and mitigation may be delayed by prolonged information gathering or unnecessary field visits

Odor Impact Assessment: Collection System

Objectives

- Define specific areas within OCSD service area that may be impacted by nuisance odors (i.e. H₂S) originating from OCSD assets (manholes, pump stations, chemical tanks)
- Based on complaint location, generate list of OCSD assets to check for odor production

Odor Impact Assessment: Collection System

Point Pattern Analysis

Odor Impact Assessment: Treatment Plants

Work completed by UCLA in 2015: Odor Characterization

- Conducted Odor Profile Method (OPM)
 - Sensory method; panelists were trained to identify multiple odor characters and their respective intensities in a single sample
 - Odor intensity from OPM is proportional to the log concentration of the chemical causing odor, relationship known as the Weber-Fechner curve

Treatment Plant Odors – Odor Characterization

Work completed by UCLA in 2015: Determination of Odor Threshold Concentrations and Odor Nuisance Concentrations for major odorants

Treatment Plant Odors – Odor Characterization

Work completed by UCLA in 2015 : Identification of nine "most detectable" odorants at OCSD plants

	Chemical	Odor Group	Odor Characteristic	
1	Hydrogen Sulfide (H ₂ S)	Sulfur Group	Rotten Egg	
2	Methyl Mercaptan (MM)	Sulfur Group	Rotten Vegetable	
3	Dimethyl Sulfide (DMS)	Sulfur Group	Canned Corn	
4	Dimethyl Disulfide (DMDS)	Sulfur Group	Rotten Garlic	
5	2-Methylisoborneol (MIB)	Musty Group	Musty	
6	2-Isopropyl-3-methoxypyrazine (IPMP)	Musty Group	Musty	
7	Indole	Fecal Group	Fecal	
8	Skatole	Fecal Group	Fecal	
9	Ammonia (NH ₃)	Ammonia Group	Pungent	

Source: (Suffet, Zhou, and Braithwaite, 2015)

Treatment Plant Odors – Odor Characterization

Work completed by UCLA in 2015: Determination of OTCs for "most detectable" odorants

			-			
	Linear		OTC (Intensity Score 1)		Nuisance (Intensity Score 3)	
Chemical	Equation	R ²	ng/L in air	ppb-v	ng/L in air	ppb-v
H₂S	y=5.1x-13	0.99	0.7	0.5	2	1
MM	y=4.5x-8.7	0.99	0.2	0.08	0.4	0.2
DMS	y=4.7x-17	0.99	8	3	20	8
DMDS	y=3.7x-9.9	0.95	0.8	0.2	3	0.8
MIB	y=4.2x-8.1	0.98	0.1	0.02	0.4	0.06
IPMP	y=2.1x-1.9	0.96	0.02	0.004	0.2	0.04
Skatole	y=6.0x-11	0.94	0.09	0.02	0.2	0.04
Indole	y=5.7x-18	0.96	2	0.5	5	1
Ammonia	y=3.4x-19	0.99	900	1000	3000	5000

Linear Regression Results, OTCs, and Nuisance Levels of Odorants

Source: (Suffet, Zhou, and Braithwaite, 2015)

Treatment Plant Odors – Odor Impact Assessment

Work completed by CH2M Hill in 2017: Air Dispersion Modeling

Source: (CH2M Hill, 2017)

Treatment Plant Odors – Odor Impact Assessment

Work completed by CH2M Hill in 2017: Air Dispersion Modeling Output

- Maximum offsite concentrations over a 5-year period
- Baseline Existing
 Conditions
- Isopleths for MM, H₂S, Skatole, IPMP, DMS

Treatment Plant Odors – Complaint Analysis

Objectives:

- To categorize and map historic odor complaint data in more descriptive detail to directly assess nuisance extents in the vicinity of the treatment plants
- To verify that the distribution of modeled nuisance concentrations correspond to actual odor perceptions by residents

Treatment Plant Odors – Odor Impact Assessment

Wastewater Odors - Field Observations

- Directly collect and map odor observations (i.e. H₂S) at specific locations in the collection system and treatment plants
- Compare to modeled odor concentrations and assess human perceptions of treatment plant odors
- Measure and compare odor observations before and after mitigation activities

Odor Impact Assessment – Anticipated Results

Collection System

- Map showing area surrounding OCSD assets susceptible to odor complaints from residents
- Script tool to generate list of OCSD assets within vicinity of reported complaint

Treatment Plants

- A report with definitive complaint analysis results and discussion on precision of current plant odor impact estimates and previous modeling efforts compared to reported odor complaints
- Mobile application for collection and mapping of field odor observations

Timeline

- December 2018 Gather and prepare data
- December 18, 2018 GEOG 596A Presentation
- January 2018 Perform analysis, develop Survey 123 application
- February 2018 Continue analysis, test Survey 123 application
- March May 2018 Refine analysis, collect sensory observations
- June 2018 Prepare report, finalize presentation
- July 2018 Present at 2018 Esri User Conference

- Bull, M. A., & Fromant, E. L. (2014). The performance of numerical odour assessment for the prediction of odour complaints from wastewater treatment works. *Water and Environment Journal, 28*, 316-322. Retrieved October 16, 2017, from http://onlinelibrary.wiley.com.ezaccess.libraries.psu.edu/doi/10.1111/wej.12036/full
- Burlingame, G. A. (2009, February). A practical framework using odor survey data to prioritize nuisance odors. *Water Science and Technology : A Journal of the International Association on Water Pollution Research, 59*(3), 595. Retrieved October 25, 2017, from http://wst.iwaponline.com/content/59/3/595
- Burlingame, G., Suffet, I., Khiari, D., & Bruchet, A. (2004). Development of an odor wheel classification scheme for wastewater.
 Water Science and Technology : A Journal of the International Association on Water Pollution Research, 49(9), 201. Retrieved
 October 25, 2017, from http://wst.iwaponline.com/content/49/9/201
- California Air Resources Board. (2016, August 22). *https://www.arb.ca.gov*. Retrieved from Hydrogen Sulfide and Health: https://www.arb.ca.gov/research/aaqs/common-pollutants/h2s/h2s.htm

- Capelli, L., Sironi, S., Del Rosso, R., & Guillot, J.-M. (2013, November). Measuring odours in the environment vs. dispersion modelling: A review. Atmospheric Environment, 79, 731-743. Retrieved December 9, 2017, from https://doi.org/10.1016/j.atmosenv.2013.07.029
- CH2M HIII Engineers, Inc. (2017). SP-166 Odor Control Master Plan for OCSD Final Report. Santa Ana, CA: CH2M Hill.
- City of Los Angeles Department of Public Works. (2011, August). Sewer Odor Control Master Plan. Los Angeles, CA, USA. Retrieved November 23, 2017, from https://www.lacitysan.org/cs/groups/public/documents/document/y250/mdez/~edisp/cnt013943.pdf
- Jiang, G., Sun, J., Sharma, K., & Yuan, Z. (2015). Corrosion and odor management in sewer systems. Current Opinion in Biotechnology, 33, 192-197. Retrieved October 16, 2017, from http://www.sciencedirect.com.ezaccess.libraries.psu.edu/science/article/pii/S0958166915000518?via%3Dihub

- Lewkowska, P., Cieslik, B., Dymerski, T., & Konieczka, P. (2016). Characteristics of odors emitted from municipal wastewater treatment plant and methods for their identification and deodorization techniques. Environmental Research, 151, 573-586.
 Retrieved October 16, 2017, from http://www.sciencedirect.com.ezaccess.libraries.psu.edu/science/article/pii/S001393511630487X?via%3Dihub
- Orange County Sanitation District. (2015). 5-year Strategic Plan. Fountain Valley: OCSD.
- Palmer, T., Lagasse, P., & Ross, M. (2000, December 28). www.wqpmag.com. Retrieved from Hydrogen Sulfide Control in Wastewater Collection Systems: https://www.wqpmag.com/hydrogen-sulfide-control-wastewater-collection-systems
- Sironi, S., Capelli, L., Céntola, P., Del Rosso, R., & Pierucci, S. (2010, January). Odour impact assessment by means of dynamic olfactometry, dispersion modelling and social participation. Atmospheric Environment, 44(3), 354-360. Retrieved December 10, 2017, from http://www.sciencedirect.com.ezaccess.libraries.psu.edu/science/article/pii/S1352231009008917#!
- Suffet, D., Zhou, Y., & Braithwaite, S. (2015). Final Report: Determination of Odor Threshold Concentrations. Los Angeles, CA: UCLA.

- Suffet, M., Abraham, S., & Zhou, Y. (2014). Final Report OCSD, Task 1.5 Odor Data Analysis for Odor Control Master Plan. Los Angeles: UCLA. Retrieved October 25, 2017
- Talaiekhozani, A., Bagheri, M., Goli, A., & Khoozani, M. (2016). An Overview of principles of odor production, emission, and control methods in wastewater collection and treatment systems. Journal of Environmental Management, 170, 186-206. Retrieved October 16, 2017, from http://www.sciencedirect.com.ezaccess.libraries.psu.edu/science/article/pii/S0301479716300196?via%3Dihub
- Wisconsin Department of Health Services. (2017, March 10). https://www.dhs.wisconsin.gov. Retrieved from Sewer Gas: https://www.dhs.wisconsin.gov/air/sewergas.htm
- Zhou, Y., Hallis, S., Vitko, T., & Suffet, I. (2016, September). Identification, quantification and treatment of fecal odors released into the air at two wastewater treatment plants. Journal of Environmental Management, 180, 257-263. Retrieved October 25, 2017, from http://www.sciencedirect.com.ezaccess.libraries.psu.edu/science/article/pii/S030147971630295X