
GEOBIA TECHNIQUES TO IMPROVE IMPERVIOUS SURFACE 

CLASSIFICATION BENEATH THE TREE CANOPY FOR 

ACCURATE IMPERVIOUS SURFACE PER PARCEL 

CALCULATION IN ATHENS, OH 

1.  INTRODUCTION 

With climate change threatening on the horizon, it is more important than ever that cities are 

prepared to meet the challenges of rapidly changing demographics and increasingly extreme 

weather events. According to the study, Causal Effect of Impervious Cover on Annual Flood 

Magnitude for the United States, “For every percentage point increase in roads, parking lots 

and other impervious surfaces that prevent water from flowing into the ground, annual floods 

increase on average by 3.3%” (Blum 2020). Impervious surface refers to all hard surfaces 

such as paved roads, parking lots, roofs, and highly compacted soils, that prevent the natural 

soaking of rainwater into the ground. 

 Traditional methods of impervious surface calculation are time consuming and expensive; 

however, the continual rapid advancement in production of high-resolution remote sensing 

technology is allowing cities and individuals to leverage geos-spatial problem-solving 

methods that would not have been feasible in past decades, making remote sensing an 

attractive solution for cities seeking a low cost means of assessing impervious surface. 

E-Cognition is a powerful geospatial software that allows users to develop geographic object-

based image analysis (GEOBIA) rulesets to segment and classify a wide variety of raster 

products in to meaningful objects for use in geospatial analysis. While we are in some sense 

inundated with high resolution lidar and aerial data, access to the highest quality data and 

software processing licenses are limited, and data available for public use varies widely in 

terms of quality. E-Cognition and similar data fusion software enables users to make the most 

out of large scale, state funded data sets and perform accurate land classifications surveys 

without large teams and traditional survey equipment. However, the ability to remotely sense 

the ground surface beneath the tree canopy is a benefit of land based surveys that remote 

sensing techniques have yet to fully compensate for.   

 In the following document, I examine the uses and limitations of the key lidar, aerial, and 

thematic data types in assessing the ground surface beath the tree canopy. I then apply that 

analysis to an examination of the workflow used to extract the impervious surface of the city 

of Athens, OH, as well as key E-Cognition algorithms that are shown to be effective in 

producing an impervious surface raster. Finally, I report the results of impervious surface 

classification and apply it to the calculation of impervious surface per parcel for the  city of 

Athens. 

 

Author: Danielle Schaffeld 



2 

 

 

Figure 1  Study Area: Athens, OH 
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2.  DATA AND METHODOLOGY 

The impervious surface model was produced using high quality, publicly accessible datasets. 

The quality of a dataset as it pertains to its usefulness in a GEOBIA project can typically be 

expressed in terms of the resolution and positional accuracy of raster data and the 

completeness and positional accuracy of vector data. High resolution is a variable term that 

is constantly being redefined as technology advances; 6”, 30cm, and 1m will often all be 

considered “high resolution” depending on the vendor. As of the writing of this paper, aerial 

imagery can be said to be high resolution if the resolution six inches or less. The United States 

Geographic Survey (USG) and American Society for Photogrammetry and Remote Sensing 

(ASPRS) provide strict guidelines to assess lidar quality based on positional accuracy and 

nominal point spacing; to be considered high quality (Q1), a lidar dataset should have a .35m 

(1.14ft)nps and raster data derived from Q1 data may have a resolution no less than .5m 

(1.6ft) (NGP Standards and Specifications, 2023). Sources for the lidar, aerial, and vector data 

used in this project include the Ohio Statewide Imagery Program (OSIP), Ohio Geographically 

Referenced Imagery Program (OGRIP), Unstructured Grid (UGRID), and the USGS Earth 

Explorer and are summarized in Tables 1-3.  

1234 

Table 1 Summary of available lidar data within the Athens, OH study area. The 2021 lidar dataset was 
selected to create raster data for this project.  

 
 

1 Ohio Statewide Imagery Program (OSIP) - https://das.ohio.gov/technology-and-strategy/ogrip/projects/osip 
2 Ohio Geographically Referenced Imagery Program (OGRIP) - https://temp02.oit.test.ohio.gov/ProjectsInitiatives/ 

   OSIPDataDownloads.aspx 
3 Athens County Audor Open GIS Data - https://data-athgis.opendata.arcgis.com/ 
4 UGRID -https://www.ugridd.com/uFIND/@160+W+Union+St+Suite+150+Athens+OH+45701+USA/Ohio+  

   LiDAR+South/data=ZZKuNt1wuMv_8ZmWa7z+t1vLNv_P 
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Table 2 Summary of leaf-on and leaf-off aerial imagery used. 

 

Table 3 Summary of vector (thematic) data used. 

The quality of the data has a direct impact on the quality of the results. Not only does it allow 

for more accurate assessments of area, the higher the resolution of the raster data, the easier 

it is for E-Cognition’ s processing algorithms to identify distinct objects. However, access to 

the highest quality datasets is variable, leaving many communities to rely on data acquired at 

the state or federal level, which, due to the steep acquisition cost, is often of slightly less 

quality that can be achieved by a targeted survey at the local level. Therefore, an important 

aspect of this project is that it can be replicated using data of a quality that can reasonably be 

expected to be freely available anywhere in the United States.  

The project was performed using a combination of E-Cogntion 10.3, E-Cogntion Server, and 

ArcGIS Pro 3.2. ArcGIS was used to convert the lidar point cloud into the height, slope, and 

intensity rasters used in E-Cognition and to clip the aerial imagery to the Athens city 

boundary. However, if licenses are sparse, open-source geospatial software such as QGIS can 

be used to perform the same functions. Lidar rasterization and area per parcel calculations 

can also be performed within the E-Cognition environment. 
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2.1  Data and Useful Attributes 

2.1.1 Lidar derived data 

Lidar is a highly valuable data type for performing object-based image analyses because of its 

ability to assess the environment in three dimensions. Unlike aerial or satellite imagery, lidar 

can penetrate the tree canopy and provide information on the ground surface beneath. Key 

landscape feature attributes that may be derived from lidar include height, expressed as a 

digital surface model and normalized digital surface model (DSM/nDSM) and texture, derived 

from change in height and expressed as a slope raster and normalized slope raster 

(Slope_nDSM). This information allows us to map the geometry of the environment and 

provides key context clues for distinguishing one landscape feature from another (i.e. tree vs 

building). Additional information regarding the composition of a landscape feature can be 

inferred by the amount of energy reflected to the sensor after interacting with a surface. This 

attribute is called intensity and is recorded in the intensity raster. It is the ability to 

incorporate lidar derived products into the segmentation algorithms that distinguishes E-

Cognition from the land classification tools provided in ArcPro., which can only consider the 

spectral qualities of a single dataset.  

Lidar data provided by a vendor will typically undergo a degree of classification prior to being 

released, whether to the public or to a private entity. Lidar will generally be classified by 

landscape feature type (ground, vegetation, building, etc) as well as by the number of returns. 

ASPRS standards describe 20 possible landscape type categories into which lidar returns may 

be classified, ranging from the broad, ground class category, to categories for specific 

features, such as bridges and powerlines (American Society for Photogrammetry and Remote 

Sensing, 2011). However, separating above ground features can be labor intensive, so, in 

practice, many vendors limit classification to two categories: ground and “not ground”. The 

presence of vegetation can be inferred by the number of returns per pulse, as ground surface 

and buildings only contain a single return. 

The lidar dataset provided by the OSIP contains classification for return values, but no 

buildings or vegetation classes. Instead, both buildings and vegetation are classified as 

“Unassigned”. This presents a particular challenge for deriving impervious surface, as tree 

canopy returns need to be removed from the dataset in order to get an accurate 

determination of the surface underneath. Strategic combinations of number of returns and 

the ground returns can reduce the amount of tree canopy cluttering the nDSM. A significant 

portion of the tree canopy was reduced by subtracting a last of many returns normalized 

surface model (LOM_nDSM) from the nDSM. However, attempts to fully remove the tree 

canopy from the nDSM without simultaneously removing the buildings were unsuccessful.  
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For this reason, the use of a lidar intensity raster for impervious surface classification was 

investigated. Initial results were promising. ESRI defines lidar intensity as “a measure…of the 

return strength of the laser pulse that generated the point. It is based, in part, on the 

reflectivity of the object struck by the laser pulse” (ESRI, 2021). Lidar wavelengths are within 

the near infrared range, and similarly may be used to distinguish vegetation from impervious 

surface (Figure 1). In theory, lidar intensity can combine the benefits of NIR and NDVI in 

surface classification with the ability of 

lidar to penetrate the tree canopy. Multiple 

studies may be found confirming the 

effectiveness of lidar intensity in landcover 

classification (Antonarakis et al., 2008; 

Song, et al., 2002). However, Kashani et al. 

note that intensity values are highly 

susceptible to atmospheric humidity and 

surface wetness, and often require 

correctional processing at increasing 

levels of complexity to remove errors from 

overlapping swaths, correct for angle of 

incidence, and make full use of the data 

(Kashani et al., 2015). The ad hoc 

normalization method suggested by 

Kashani was attempted in this study 

(Figure 2, next page). Although the dataset 

became more homogeneous, allowing for 

more intuitive segmentation, the 

difference in values between road and grass were expressed in decimals. Such as fine 

threshold was difficult to segment. So, despite the enhanced visual quality of the intensity 

data, reducing the tree canopy through the creation of a LOM_nDSM was ultimately more 

effective and less time consuming (Figure 3, next page). It should be noted that, while 

intensity was not the most useful method for segmentation in this study, the lidar intensity 

attribute was a useful aid in assigning class values, such as filling in gaps in the impervious 

surface classification caused by shadows. 

 

Figure 2 Example of lidar intensity raster showing a 
portion of downtown Athens, OH, filtered by ground 
and last of many returns. Bright values represent 
ground vegetation; darker values indicate paved 
surfaces. Dark pixel groupings shaped like trees are 
last of many returns. Light is absorbed when it passes 
through trees, resulting in a darker value.  
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Figure 3  Example of un-corrected ground lidar intensity return raster (a) and the same ground lidar 
intensity raster conditioned using the ad hoc normalization method (raster value - min raster 
value/raster max value - raster min value). 

 

 

Figure 4 Reduction in tree canopy created by subtracting a last of many returns nDSM (b) from a 
standard nDSM filtered for ground and last of many returns (a).  While some of the tree canopy remains,  

  



8 

2.1.2 Aerial Imagery 

Four-band aerial imagery (R-G-B-NIR) captures the spectral qualities of landscape features 

and has a long history of use in the agricultural industry for assessing the health and species 

of vegetation.  

The two most useful attributes derived from four-band aerial imagery are near infrared (NIR) 

and normalized differential vegetation index (NDVI). The NIR spectrum falls just outside the 

visible range and measures the amount of solar radiation reflected from a landscape feature 

(USDA, 2017). Paved surfaces tend to be darker and therefore absorb more light, while the 

chlorophyll present in vegetation causes more energy to be reflected back to the sensor. 

Therefore, NIR values for impervious surfaces tend to be higher than NIR values for pervious 

surfaces. NDVI is calculated using the formula NIR-RED/NIR+RED where RED refers to the 

first band in four-band aerial imagery. There is a high correlation between NDVI values and 

impervious surfaces, with impervious surfaces tending to be negative and pervious surfaces 

tending to be positive. However, pervious bare earth will sometimes have negative NDVI 

values as well due to the absence of radiation- reflecting vegetation. 

The usefulness of aerial imagery in distinguishing the built environment, vegetation, and 

water is well established. However, when used to assess impervious surface area, there are 

three aspects which limit its usefulness. First, aerial imagery is incapable of penetrating the 

tree canopy, leading to gaps in the data where the ground surface cannot be imaged. As the 

spectral qualities of the Tree class are similar to other pervious classes such as grass, this is 

most often a limiting factor when it comes to classifying roads, buildings, and other classes of 

the built environment. The inability of aerial imagery to penetrate the tree canopy can be 

mitigated in many regions of the United States by the use of leaf-off four-band aerial imagery. 

The degree to which this strategy is effective varies regionally and is heavily influenced by 

the seasonal window and type of tree species common to the survey area – evergreen trees 

do not lose their foliage. For the study area in Athens, OH 6” color infrared (NIR, R, G) is 

available. As evidenced in (Figure 4, next page), while the canopy is much less dense in 

comparison to leaf-on aerial imagery, enough evergreen trees are present to impede 

impervious surface classification. 
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Figure 5 Comparison between Leaf on NAIP imagery and 2014 Leaf-off CIR (NIR, R, G) 

The second limiting factor is that there is a tendency for bare earth to be conflated with some 

types of impervious surfaces, particularly during the “first pass” classification phase which 

frequently uses NDVI values as a primary attribute for classification (Table 4).  

 

Table 4 NDVI and NIR values used to find NIR and NDVI ranges. Samples were taken from each tile, when 
possible. 
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There are multiple strategies to address this limitation in E-Cognition. For example, if the 

incorrectly classified bare earth objects are relatively small and/or share a large segment of 

their perimeter with pervious objects, the bare earth segments may be removed based on 

area or be merged with the surrounding objects using algorithms such as “grow region” or 

“remove by relative border”. Alternatively, if there are relatively large regions of bare earth, 

as is the case in the Athens study area, E-Cognition’ s ability to classify data on multiple levels 

allows the user to refine the initial classification by means of conditionally re-segmenting the 

data using the “first pass” impervious surface class as a limiting factor. In the Athens study 

area, refining the classification on a sub-level using NIR values to re-segment the initial 

impervious classification was effective. 

The final limiting factor is the presence of shadows. Shadowed areas alter the spectral 

readings of both the NIR and Red bands, resulting in skewed NIR and NDVI readings relative 

to areas without shadows. Although the lidar intensity raster was ultimately less useful than 

hypothesized for classifying landcover beneath the tree canopy, the lidar intensity attribute 

was useful for filling in shadowed areas.  

  

2.1.3 Thematic Vector Files 

Thematic Vector files are vector-based data that can aid in the segmentation process by 

providing pre-existing objects such as buildings or roads. For example, many communities 

have pre-existing building polygons which could be brought into E-Cognition to define the 

building class. This would greatly reduce the complexity of the impervious surface 

classification ruleset and shorten the time needed to create a LOM_nDSM raster, as separating 

trees and buildings becomes a moot point. Unfortunately, no building polygons were 

available in Athens. Alternatively, road centerlines may be used to facilitate road 

classification by searching for objects within a certain distance equal to road width. Road 

centerlines were obtained from the Athens Open Data website; however, the width of the 

roads varies frequently throughout the region, reducing their effectiveness. Instead, road 

edges were created within E-Cognition using the Slope_nDSM raster. Parcel data was also 

obtained from the Athens Open Data website and used within ArcGIS Pro to calculate the 

percent impervious surface per parcel. 

 

2.2 Workflow 

Ruleset development in E-Cognition is flexible by necessity. Each geographic region has 

unique properties that will affect not only the attribute ranges for properties such as NIR and 

NDVI, but which datasets will be most appropriate to use.  Different sensor brands will also 

collect data slightly differently from each other; no two datasets are alike, even if they are 

collected in the same region during the same time period. As a consequence, there is a trade-

off between time spent fine-tuning a ruleset and time spent performing manual corrections, 

and hours spent creating the perfect ruleset for one project may not translate to hours saved 

on the next. However, impervious surface classification will follow general patterns, allowing 
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ruleset templates to be transferred from project to project. This section discusses best 

practices learned from the creation of this ruleset. 

2.2.1 Tiling using E-Cognition Server 

To begin, the E-Cognition Server extension was used to create 30 2000x2000 pixel sized tiles. 

Breaking large datasets down into tiles to be processed in the cloud allows E-Cognition 

software to segment large datasets in a relatively short amount of time. After segmentation 

is complete, the tiles are stitched together before beginning the initial classification phase. 

The data was segmented several times across four levels throughout the workflow; each time, 

the same process of tiling and stitching the data using E-Cognition Server was used to speed 

up processing times.  

2.2.2 Initial Tree Building Segmentation 

Following industry leader Jarlath O’Neill’s advice, the first classification assigned to the data 

will be to separate tall objects, such as trees and buildings from the ground surface and low 

vegetation. A nice metric to use is Tall > 2m. From there, the ‘Tall’ class will be subdivided 

into Tree Candidate and Building Candidate classes. With that aim in mind, a variety of 

segmentation algorithms were experimented with to produce the best objects to be used for 

the initial Tree/Building Segmentation. Objects should ideally be of the largest size possible 

without containing both trees and buildings. The segmentation preview tool was 

instrumental in allowing several algorithms with a variety of parameters to be tested on the 

fly without executing the ruleset. The multi-resolution algorithm based on Slope-nDSM, 

intensity, and nDSM with additional weight given to Slope_nDSM produced the most natural 

objects. Note that the Slope_nDSM raster was created by running the slope function in ArcGIS 

pro against the LOM_nDSM (last of many nDSM) raster described in previous sections. 

Throughout this workflow, Slope_nDSM refers to that raster, while the Slope raster refers to 

a Slope surface derived from the digital elevation model (DEM). 
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The result is a set of decently 

well-defined tree and building 

objects (Figure 5, left). Although 

the shape will be refined in future 

steps, the inclusion of a 

Slope_nDSM has the effect of 

creating what will be termed 

“buffer” objects around the 

perimeter of the buildings. While 

the work siphoning out high 

vegetation lidar points through 

strategic manipulation of last of 

many returns in ArcGIS Pro has 

eliminated many trees 

overhanging buildings, where 

remaining tall vegetation 

overlaps buildings, a majority of 

the overlapping tree objects are 

connected to the ”buffer object” 

rather than the central building 

object. In later steps, the central building object will become the seed to grow the building 

class the buffer object once the remaining trees have been separated from the buffer. 

2.2.3 Initial Ground Classification 

Next, the initial pervious vs impervious ground classification was performed. The primary 

goal of this step was to create a road classification. In the absence of vector data to use as a 

thematic layer, the edges of the road were created by segmenting the Slope layer using the 

contrast split (contrast mode edge ratio, chessboard size 200) algorithm. Then, at a new 

level, a quadtree segmentation (scale = 60) was performed based on Slope, NIR, Red, and 

Green (Figure 6, next page). The slope attribute was chosen because paved surfaces tend to 

have a small change in slope within a single object, as roads are fairly smooth. The two 

object levels were subsequently merged using the convert to sub-objects algorithm. The 

sub-objects fleshed out gaps in the edges created by the contrast split algorithm and 

provided objects that would fill the road area between the edges. A negative NDVI value was 

the primary method used to fill the road edges. Although not the intention, this method also 

did a decent job of classifying buildings, sidewalks, parking lots and driveways. Finally, the 

intensity attribute was used to fill gaps made by shadows. 

Figure 6 Initial Tree/Building Segmentation (multiresolution 
comp .7 shape .2) showing "buffer object" (green). 
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Figure 7 Results of initial classification of both ground and above ground features.  

 

2.2.4 Refining the Initial Tree/Building Classification 

Separating the tree objects from the buffer objects was the most difficult step. While slope, 

intensity, last of many (paired with the height condition), and various geometry attributes 

were all used at various points during this process, no one attribute stood out as definitive. 

Rather, removing the overlapping canopy was achieved by breaking up the clusters of 

objects, based on one of the above attributes, then cycling through successive rounds 

segmentation, classification, then re-segmentation until a satisfactory border was achieved. 

This was done primarily through as sort of “push-pull” dynamic between using the remove 

object algorithm, which allows the user to reclassify objects into the class with which they 

share the longest border, and then the grow region algorithm, which allows the user to 

extend the current class into adjoining objects. 
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2.2.5 Refine Ground Classification 

As mentioned previously, several sections of bare earth were mis-identified as impervious 

based on the lack of vegetation to reflect the NIR and Red band attributes. Small, irregularly 

shaped, misclassified impervious areas enclosed by the pervious class were reclassified as 

pervious based on the pixel area, and roundness attributes. At a new level (L3), larger areas 

of bare soil were corrected by re-segmenting the impervious class using a multi-resolution 

segmentation algorithm, then using the NIR values to reassign objects to their correct class.  

 
Figure 8 Example of bare earth areas removed using a combination of area size, re-segmentation, and 
reclassification based on NIR >150. 

 

The ground classification was then brought back up to Level 1, where the final building class 

is stored. Once a satisfactory result had been achieved, the building, impervious, and 

pervious classes were exported as shapefiles to be used in ArcGIS Pro to calculate the 

impervious surface per parcel. 

 

A copy of the ruleset used to calculate the impervious surface can be found in the Appendix.  
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3.  RESULTS  

Approximately 3.5 miles of land belonging to the City of Athens, OH and Ohio University were 

remotely surveyed to extract impervious and pervious surfaces.  

 

Figure 9 Map showing the extent of the area classified using remote sensing methods (red). Total 
area ~ 3.5 square miles 

 

The total amount of pervious surface was 2.14mi2 and the total amount of impervious surface 

was 1.38mi2. Of the that area, 3,828 objects totaling an area of 11,279,493.2ft2 were classified 

as buildings. A visual inspection of the results indicated that several areas classified as 

impervious should correctly have been classified as pervious. My hypothesis was that this 

was due to the conflation of bare earth and impervious land classifications. Bare earth is often 

misclassified as pavement when performing object-based image analyses if the primary 

attribute used to distinguish pavement from vegetation is the NIR or NDVI, as these two 

attributes only indicate the presence of vegetation, and the lack of vegetation does not 

necessarily equate to the presence of pavement.  
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Classification Impervious Pervious Total User Accuracy Kappa 

Impervious 43 7 50 0.86 0 

Pervious 4 46 50 0.92 0 

Total 47 53 100 0 0 
Producer 
Accuracy 0.91 0.88 0 0.88 0 

Kappa 0 0 0 0 0.79 

 

Table 5 Confusion Matrix (sample size 100) generated for the impervious land classification using the 
strategized random classification method.  

A simple confusion matrix was generated from a set of 100 random points using the random 

strategized method (Table 5). While the impervious surface producer accuracy was 91%, the 

user accuracy was only 86%, confirming that several areas classified as impervious were not 

impervious on the ground. A second statistic was computed for only the objects belonging to 

the building sub-class to test how many of the building objects were correctly identified 

(Table 6).  

 

Classification Building = True Building = False Total User Accuracy 
Building = True 46 4 50 0.92 

Building = False 4 46 50 0 

Table 6 Confusion Matrix for building sub-class. Points generated using the random points generator 
restricted to areas within the building sub-class. 

This statistic was only to test whether the object identified at the test point was or was not a 

building, so only the user accuracy is relevant, as in this case the producer accuracy would 

equal the user accuracy. The results show that user accuracy for the buildings sub-class was 

92%. This is significantly higher than the user accuracy for the overarching impervious class, 

implying that much of the error was generated from mis-identified ground classes, which 

supports the initial hypothesis that a large part of the error was a result of the mis-classes 

bare earth. Three out of the four mis-identified buildings were located in the more rural 

regions in the north of the study area, which is unsurprising given the higher number of trees 

in the area (Figure 11, next page).  

It should be noted that the sample size of 50 points is smaller than recommended for an area 

of this size. A larger sample size may give different results and provide additional insights 

into the data. The decision to use fewer was due to time restrictions. 
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Figure 10  Comparison between classified impervious surface (pavement = grey, buildings = orange) 
and the terrain showing the relative successfulness of the southern, urban regions in comparison 
with the northern, rural regions. 

 

Overall, the classification in the more urbanized regions of the city was significantly more 

accurate than the classification in the more rural areas in the north and northeast portions of 

the city. This disparity can most likely be attributed to using slope data to calculate the road 

surface, the difficulty in removing the tree canopy in areas of denser growth, and 

inexperience.  
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4.  CONCLUSIONS 

The purpose of this project was to examine the uses and limitations of the key lidar, aerial, 

and thematic data types in assessing the ground surface beath the tree canopy in order to 

produce an accurate map of the percent impervious surface per parcel. The results indicated 

that the rulesets developed to differentiate buildings and trees in an urban environment were 

largely successful. However, the ruleset process decisions made to do so resulted in a ruleset 

that failed to differentiate as well between bare earth and impervious surfaces in the more 

rural regions. 

At the start of this project, I focused heavily on methods of removing the tree canopy and did 

not consider that classifying the surface beneath might prove to be as difficult.  

Buildings and trees were distinguished with a relatively high degree of accuracy, particularly 

in the urban areas, through efforts to remove as much vegetation as possible from the DSM 

used in E-Cognition. Lidar intensity was also investigated for its usefulness in providing 

information regarding the sub-canopy surface land class. While I believe that intensity shows 

great potential to be useful as a primary attribute for classification of impervious surface, it 

is likely that the process of performing more complex corrections needed to reduce noise in 

the data would be too time consuming for many projects. When compared to the normalized 

digital surface raster created by subtracting the normalized last of many returns nDSM from 

the normalized last of many returns and single returns raster, the lidar intensity raster was 

less useful for as a primary attribute for segmentation. Nevertheless, lidar intensity was 

found to be useful for filling in shadows. 

The ruleset used to classify the data relied on using slope to create the road edges, then filling 

in the interior using a combination of slope, NDVI, and lidar intensity. The reason I did not 

use the road centerline to create a buffer to use as a thematic layer in E-Cognition is that the 

road widths vary; I was afraid I would mis data due to different road widths. NIR and NDVI 

could then be used to separate roads from pervious classes. However, many areas beneath 

the tree canopy had little to no visible vegetation, so neither the NIR nor NDVI attributes, 

which both emphasize the presence of plants, were as useful as I would have hoped for 

distinguishing the built environment from bare earth. While successive rounds of 

classification, segmentation and reclassification based on those NIR and NDVI values were 

successful in removing the worst of the bare earth classified as impervious during the initial 

classification, enough mis-classified areas remain to be noticeable.  

Finally, more sophisticated E-Cognition rulesets, as well as more familiarity with the available 

functions would have improved my final classification results. For example, the Region 

function would have allowed me to apply different routines to different geographic sub-

regions of my study area. Additionally, recent E-Cognition releases allow deep learning 

models to be imported into the software. The use of one of these models would likely facilitate 

the extraction of building footprints. 
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Ultimately, E-Cognition was an effective tool for classifying impervious surfaces. A user 

accuracy of 86% was achieved, and the experience gained investigating how data sources 

interact with each will prove useful in future ruleset development. 
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APPENDEX  

Rule set used to extract the impervious surface in Athens, OH. 

 


