Using Remote Sensing For Pocket Estuary Mapping Within Puget Sound

Oleksandr Stefankiv | MGIS Capstone Project Proposal | May 1, 2020
Pennsylvania State University | Advisor: Jarlath O’Neil-Dunne
Outline

• Background
 • Introduction
 • Problem
 • Solution
 • Pilot Project

• Project Goals and Objectives

• Proposed Methodology
 • Geographic Object-based Image Analysis
 • Habitat Classification Scheme
 • Project Workflow

• Anticipated Results

• Project Timeline
Introduction

- **Puget Sound basin**
 - Contains 16 large river systems and estuaries
 - Many small-scale pocket estuaries and independent streams

- **Pacific salmon**
 - Quintessential Puget Sound species
 - Provide major cultural, recreational, and economic value to the region
 - Chinook salmon listed as threatened under Endangered Species Act

- **Estuaries**
 - Are of great value for the endangered salmon
 - Majority lost due to degradation from agriculture and urbanization
Pocket Estuaries

- **Barrier embayments**
 - Partially enclosed nearshore sub-estuaries
 - Have low energy habitat features
 - Potentially depressed salinity for part of the year
 - Form behind coastal accretion landforms or at small creek mouths
 - Typically characterized as tidal lagoons that contain fringing unvegetated flats, saltmarsh, and tidal channels
 - Non-natal rearing and refuge habitats
 - Utilized by juvenile Chinook salmon during migration from freshwater to saltwater

Beamer et al. 2005
Pocket Estuaries

- **Barrier embayments**
 - Partially enclosed nearshore sub-estuaries
 - Have low energy habitat features
 - Potentially depressed salinity for part of the year
 - Form behind coastal accretion landforms or at small creek mouths
 - Typically characterized as tidal lagoons that contain fringing unvegetated flats, saltmarsh, and tidal channels
 - Non-natal rearing and refuge habitats
 - Utilized by juvenile Chinook salmon during migration from freshwater to saltwater

Beamer et al. 2005
Pocket Estuaries

Copyright © 1994-2020. Washington State Department of Ecology. All rights reserved.
Problem

• Need for restoration and protection of pocket estuaries is well recognized by federal, state, and local entities

• Habitat monitoring is imperative in assessing change from degradation or restoration

• Habitat has not been mapped on a consistent basis at the Puget Sound scale
Solution

- Remote sensing of estuarine habitats is a valuable and effective tool
- Resulting data products aid stakeholders in conservation and restoration
- Manual imagery interpretation
 - Monitoring pocket estuary habitat at the sub-basin scale (SRSC)
 - Monitoring large river estuary habitat at the regional scale (NOAA)
 - Can be time-consuming, cost-inefficient, and inconsistent
- Automated remote sensing approach is better suited and could be more cost-efficient for consistent assessment of estuarine habitat
Pilot Project

• Substantial efforts of SRSC in assessment of pocket estuary habitat provide excellent benchmark in comparison of an automated method to manual approach

• Pilot project to test viability of new method

• Focusing on Whidbey Island

• If successful could expand to Puget Sound
Project Goals and Objectives

• **Project Goals**
 • Improve consistency and efficiency of pocket estuary habitat mapping within Puget Sound by developing a comprehensive geographic object-based analysis methodology.
 • Build on and contribute to the body of research on the application of remote sensing techniques in wetland habitat management.

• **Project Objectives**
 • Evaluate the availability and suitability of remotely sensed and ancillary data.
 • Develop protocols and prepare the acquired datasets for analysis.
 • Perform geographic object-based image analysis using a hierarchical rule-based system for classification of pocket estuary habitat features.
 • Evaluate the resulting accuracy of classified pocket estuary habitat features.
Geographic Object-based Image Analysis

- **Traditional pixel-oriented approach**
 - Classification applied to pixels
 - Does not include contextual information regarding neighboring pixels
 - Suffers from “salt and pepper” effect caused by high heterogeneity between neighboring pixels

- **Object-based approach**
 - Classification applied to objects that are formed by grouping pixels based on spectral homogeneity
 - Has ability to utilize a fusion of various data sets, such as elevation
 - Can significantly increase the classification accuracy of wetland habitat features

Campbell and Wang, 2019

Ballanti et al. 2017
Habitat Classification Scheme

- Recovery and Implementation Technical Team Common Framework classification scheme
- Developed to provide a formal monitoring framework for assessing Puget Sound Chinook recovery

- Berm
- Built
- Beach face
- Channel
- Fill
- Fill wood
- Impoundment
- Low tide terrace
- Rocky beach
- Tidal marsh
- Tidal scrub shrub
- Tidal forest
- Wood
Project Workflow

• **Four phases**
 • Data Acquisition
 • Data Preprocessing
 • Data Processing
 • Accuracy Assessment

• **Software**
 • ArcGIS Pro
 • ENVI
 • eCognition
Data Acquisition

- **Imagery**
 - National Agriculture Imagery Program – United States Department of Agriculture
 - WorldView-2 – DigitalGlobe through NextView License Agreement

- **Elevation Data**
 - Island County LiDAR Point Cloud – Washington State Department of Natural Resources
 - National Elevation Dataset Digital Elevation Model – United States Geologic Survey

- **Ancillary Data**
 - Whidbey Basin Pocket Estuary Classification Layer – Skagit River System Cooperative
 - Road Layer – Island County
Imagery

- **Tidal stage at or near Mean Low Water is imperative**
- **NAIP aerial**
 - 2019
 - 60 cm
 - 4-bands
 - Requires minimal preprocessing
 - Acquired at high tidal stage for some locations
- **WorldView-2 satellite**
 - 2016-2018
 - 50 cm
 - 8-bands
 - Requires substantial preprocessing
 - Acquired at lower tidal stage

<table>
<thead>
<tr>
<th>Date</th>
<th>Spectral Resolution (nm)</th>
<th>Type</th>
<th>Spatial Resolution (m)</th>
<th>Tidal Stage (MLW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 March 2016</td>
<td>CB (400–450), B (450–510), G (510–580), Y (585–625), R (630–690), RE (705–745), NIR1 (770–895), NIR2 (860–1040)</td>
<td>WorldView-2</td>
<td>0.5</td>
<td>0.48 m</td>
</tr>
<tr>
<td>25 May 2017</td>
<td>CB (400–450), B (450–510), G (510–580), Y (585–625), R (630–690), RE (705–745), NIR1 (770–895), NIR2 (860–1040)</td>
<td>WorldView-2</td>
<td>0.5</td>
<td>-1.09 m</td>
</tr>
<tr>
<td>26 August 2017</td>
<td>CB (400–450), B (450–510), G (510–580), Y (585–625), R (630–690), RE (705–745), NIR1 (770–895), NIR2 (860–1040)</td>
<td>WorldView-2</td>
<td>0.5</td>
<td>0.17 m</td>
</tr>
<tr>
<td>16 July 2018</td>
<td>CB (400–450), B (450–510), G (510–580), Y (585–625), R (630–690), RE (705–745), NIR1 (770–895), NIR2 (860–1040)</td>
<td>WorldView-2</td>
<td>0.5</td>
<td>-1.17 m</td>
</tr>
<tr>
<td>22 July 2018</td>
<td>CB (400–450), B (450–510), G (510–580), Y (585–625), R (630–690), RE (705–745), NIR1 (770–895), NIR2 (860–1040)</td>
<td>WorldView-2</td>
<td>0.5</td>
<td>0.58 m</td>
</tr>
<tr>
<td>6 August 2019</td>
<td>R (619–651), G (525–585), B (435–495), NIR (808–882)</td>
<td>Leica SH-100 (NAIP)</td>
<td>0.6</td>
<td>1.11 m</td>
</tr>
<tr>
<td>10 October 2019</td>
<td>R (619–651), G (525–585), B (435–495), NIR (808–882)</td>
<td>Leica SH-100 (NAIP)</td>
<td>0.6</td>
<td>0.68 m</td>
</tr>
<tr>
<td>11 October 2019</td>
<td>R (619–651), G (525–585), B (435–495), NIR (808–882)</td>
<td>Leica SH-100 (NAIP)</td>
<td>0.6</td>
<td>0.28 m</td>
</tr>
</tbody>
</table>
WorldView-2 Imagery Correction

- **Preprocessing is an important step in satellite data analysis**
- **Radiometric Calibration**
 - Normalizes images across dates by converting Digital Numbers to Top-of-Atmosphere Reflectance
- **Pan-sharpening**
 - Sharpens multispectral bands (2 m) to panchromatic band (0.5 m) resolution
- **Orthorectification using reference image and topography**
 - Removes topographic distortions due to systematic geometry errors
Imagery Derivatives

- Derivatives based on image bands and their mathematical combinations and ratios
 - Normalized Difference Vegetation Index
 - Normalized Difference Water Index
 - Visual brightness
 - Texture
LiDAR Derivatives

- Derivatives based on LiDAR returns
 - Digital Elevation Model
 - Digital Surface Model
 - Normalized Digital Surface Model
 - Return Intensity
Segmentation and Classification

• **Iterative rule-based approach**
 • Alternating between image segmentation and threshold based classification applied to imagery, LiDAR derivatives, and ancillary data

• **Employing multi-resolution segmentation algorithm**
 • Grouping pixels into objects based on weighted spectral, brightness and textural elements
Accuracy Assessment

- **Classification results will be compared to the SRSC data set**
 - Number of assessment points will be determined based on Congalton and Green (2009)
 - Confusion matrix will be developed
 - Class accuracies and overall accuracy
 - Kappa coefficient calculated – a measure of how the classification results compare to values assigned by chance

<table>
<thead>
<tr>
<th>Berm</th>
<th>Built</th>
<th>Beach face</th>
<th>Channel</th>
<th>Fill</th>
<th>Fill wood</th>
<th>Impoundment</th>
<th>Low tide terrace</th>
<th>Rocky beach</th>
<th>Tidal marsh</th>
<th>Tidal scrub shrub</th>
<th>Tidal forest</th>
<th>Wood</th>
<th>Total</th>
<th>User Accuracy</th>
<th>Kappa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berm</td>
<td></td>
</tr>
<tr>
<td>Built</td>
<td></td>
</tr>
<tr>
<td>Beach face</td>
<td></td>
</tr>
<tr>
<td>Channel</td>
<td></td>
</tr>
<tr>
<td>Fill</td>
<td></td>
</tr>
<tr>
<td>Fill wood</td>
<td></td>
</tr>
<tr>
<td>Impoundment</td>
<td></td>
</tr>
<tr>
<td>Low tide terrace</td>
<td></td>
</tr>
<tr>
<td>Rocky beach</td>
<td></td>
</tr>
<tr>
<td>Tidal marsh</td>
<td></td>
</tr>
<tr>
<td>Tidal scrub shrub</td>
<td></td>
</tr>
<tr>
<td>Tidal forest</td>
<td></td>
</tr>
<tr>
<td>Wood</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Producer Accuracy</td>
<td></td>
</tr>
<tr>
<td>Kappa</td>
<td></td>
</tr>
</tbody>
</table>
Anticipated Results

• **Project deliverables**
 - Data preprocessing protocols
 - eCognition rule-set of hierarchical classification of pocket estuary habitat
 - NAIP Aerial Imagery
 - WorldView-2 Satellite Imagery
 - Generated shapefiles of pocket estuary habitat classification
 - Article in a peer-reviewed journal that publishes about applications of remote sensing technology, such as Remote Sensing (ISSN 2072-4292)
<table>
<thead>
<tr>
<th>Task</th>
<th>Required Time</th>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Proposal</td>
<td>3 Months</td>
<td>March 2020 - May 2020</td>
</tr>
<tr>
<td>Data Acquisition</td>
<td>0.5 Month</td>
<td>April 2020</td>
</tr>
<tr>
<td>Data Preprocessing</td>
<td>1 Month</td>
<td>May 2020</td>
</tr>
<tr>
<td>Data Processing</td>
<td>2 Months</td>
<td>June 2020 - August 2020</td>
</tr>
<tr>
<td>Accuracy Assessment</td>
<td>0.5 Month</td>
<td>August 2020</td>
</tr>
<tr>
<td>Manuscript Development</td>
<td>3 Months</td>
<td>September 2020 - December 2020</td>
</tr>
<tr>
<td>Journal Submission</td>
<td>1 Month</td>
<td>January 2020</td>
</tr>
</tbody>
</table>
Questions?

Photo: Morgan Bond
References

References

