Forest Biomass Change Detection Using Lidar in the Pacific Northwest

Sabrina B. Turner

Master of GIS Capstone Proposal

May 10, 2016

Outline

- Relevance of accurate biomass measurements
- Previous Studies
- Project Objectives
- Study area
- Data / Methods
- Preliminary Results
- Predicted Results
- Take Away Points

Forests act as a carbon sink

Image: Carbon cycle in Europe from 1990 - 2005 Source: S. LUYSSAERT ET AL. GLOB. CHANGE BIOL. 16, 1429–1450 (2010)

Above Ground Biomass (AGB) measurements help quantify carbon stocks

Above Ground Biomass (AGB): All living biomass above the soil including stem, stump, branches, bark, seeds and foliage

Carbon Mass (kg C) = 0.5 * AGB

Traditional biomass sampling: time and cost intensive

Forest Inventory Analysis (2015 FIA Annual Report)

Traditional field collection techniques (Hoover, 2008)

The Forest Inventory and Analysis (FIA) Program is continually updated

Oregon FIA Plot locations

Image source: http://andrewsforest.oregonstate.edu/pubs/ webdocs/reports/regionl/gifs/nwfia.htm

FIA data can be integrated with remote sensing to estimate biomass

Image source: Kellndorfer, J. et al, 2013

Satellite data is appropriate for modeling biomass over large domains

Image source: Blackard et al, 2008

Lidar supports estimates with finer spatial resolution

Methods include:

Plot level

- Groups/stands of trees
- Crown-distributed approach

Tree level

- Individual trees
- Stem-localized approach

Image source: http://www.irmforestry.com

This study aims to:

Test a lidar-based method for above ground biomass (AGB) estimation

Compare results to past studies in the

same area

Detect change over a 6 year period

2006 - 2012

Study area: 53 km² in NW Oregon **EPA Level II Ecoregion:** Coast Range

Actively managed forest provides opportunity for change detection

Two lidar data sets were collected 6 years apart

	2006 Lidar	2012 Lidar			
Acquisition:	Feb. 6, 2006 – Feb. 7, 2006	Sept. 23, 2012 – Oct. 4, 2012			
Sensor:	Optech ALTM 3100	Leica ALS60			
Platform:	Cessna Caravan 208	Cessna Caravan 208			
Projection:	UTM10, Meters	UTM10, Meters			
Density:	8 pulses/m ²	8 pulses/m ²			
Accuracy:	0.03 m RMSEz	0.04 m RMSEz			
Format:	LAS 1.2	LAS 1.2			
Provider:	Watershed Sciences, Inc.	Watershed Sciences, Inc.			

The same biomass estimation technique will be run on both data sets

First, vegetation is classified in the lidar point cloud

- Trees: > 2m
- Grasses / Shrubs: 0 2m
- Ground

Vegetation points are run through segmentation algorithms

Image source: Li et al, 2012

Automated tree segmentation tools written by senior scientists at Quantum Spatial, Inc.

Height and crown area attributes are assigned to each tree

Tree top height (m)

A allometric equation for biomass was developed from regional FIA data

AGB (kg) = $(-55.53 * H) + (2.386 * H^2) + (5.062 * SqM) + (0.4238 * SqM^2)$

Variables:

H = Tree Height (feet) SqM = Crown Area (square meters)

Conversion to Carbon: AGB = Above Ground Biomass Carbon Mass (kg C) = 0.5 * AGB

Source of equation:

Andrew Gray – USFS (Personal Communication)

Source of data:

FIA plots within EPA level III ecoregion

Ground truth data indicated a linear relationship

Preliminary Results (2012): Mean Carbon Mass = 16.3 kg C m⁻²

Preliminary results align with past studies

Carbon Mass Estimates for Study Area

kg C m⁻²

Carbon estimates from previous studies were clipped to the area

Data: Landsat, 2010 Biome-BGC Carbon Cycle Model (Turner, et al. 2011) Pixel size: 1 km Mean Carbon Mass: 16.2 kg C m⁻²

Tree-level data can be used to evaluate coarser resolution analyses

Data: MODIS, 2001 (Blackard et. al, 2008) Pixel size: 250 m Mean Carbon Mass: 12.6 kg C m⁻²

Visual analysis shows significantly more tree cover in 2000

Data: Landsat, 2000 NACP Aboveground Biomass and Carbon Baseline Data (NBCD, 2000) **Pixel size:** 30 m

Mean Carbon Mass: 15.6 kg C m⁻²

Planned evaluation using Global Forest Watch

Tree Cover **Loss** 2001 - 2014

Tree Cover **Gain** 2001 - 2014

Source: Global Forest Watch. Retrieved 5 December, 2015 from http://www.globalforestwatch.org

3 Potential Sources of Error

Take away points

High resolution lidar is a good choice for tree level biomass calculation Change detection with 2006 data will provide further insight

Potential end users of this product include:

Environmental organizations Forestry companies Urban forestry programs (e.g. Tree City USA) Government and international programs

Capstone Project Timeline

Capstone Timeline	Apr-16	May-16	Jun-16	Jul-16	Aug-16	Sep-16	Oct-16	Nov-16
Run biomass analysis								
on 2012 lidar		L						
Proposal write up and								
presentation								
Run biomass analysis								
on 2006 lidar								
Change detection								
Accuracy reporting								
Write-up for journal								
submission								
Submit to journal								
Conference								
presentation								

Acknowledgements

Collaborators:

Doug Miller – Penn State University Andrew Gray – U.S. Forest Service Dave Ritts – Oregon State University David P. Turner – Oregon State University Will Fellers – Quantum Spatial Brian Kasper – Quantum Spatial Mischa Hey – Quantum Spatial

Questions

Forest Biomass Change Detection Using Lidar in the Pacific Northwest

Sabrina B. Turner

