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Background 
At the 2005 United Nations meeting on the Framework Convention on Climate Change (UNFCCC), a 
program for Reducing Emissions from Deforestation and Forest Degradation (REDD) was instituted. The 
aim was for countries and participants to be rewarded for efforts to reduce greenhouse gas emissions 
associated with forest ecosystems. Refinements of the REDD concept in 2008 refer to the sustainable 
management of forests and the conservation and enhancement of forest carbon stocks (UNFCCC, 2008). 
In 2010, participating countries were requested to establish national forest monitoring systems (NFMS). 
Recommendations included approaches in which carbon stock measurements were made using a 
combination of remote sensing and ground based observations (UNFCCC, 2010). 

 
The needs of the REDD program present a challenge to the remote sensing community to develop 
methods for characterizing initial carbon stocks, as well as changes in carbon stocks, over large domains. 
In order to measure the carbon contained in a forest, the above ground biomass (AGB) is estimated and 
multiplied by 0.5. This equation is standard in the forest industry (Blackard, 2008, Hoover, 2008). 
Traditional methods of estimating AGB include establishing a network of forest plots that, in theory, 
samples the spatial heterogeneity in forest condition and forest biomass over the domain of interest. 
Field data collection can incur substantial cost, so it is important to only obtain the number of samples 
needed to represent the mix of younger and older growth of the trees in the area of interest. Once the 
samples are taken, an average is calculated over the study area. A major challenge to this approach is 
obtaining the appropriate number of sample plots to ensure an accurate representation of the spatial 
heterogeneity of the full area. Large areas offer an even greater challenge in that even very 
comprehensive field measurement campaigns cover only small portions of any landscape. 
Understanding landscape-scale and larger patterns relies upon extending point-based field 
measurements, which can be accomplished by integrating and scaling them with remote sensing 
(Hoover, 2008 p.180). 

 
In contrast to the traditional sampling approaches, remote sensing now offers the opportunity for 
continuous coverage over large domains, which can reduce the uncertainty with respect to sampling 
error caused from relying on field measurements alone (Hoover, 2008). Plot measurements are matched 
with the remote sensing data and averages can be interpolated across a grid, providing less room for 
error and more comprehensive results. Remote sensing has thus begun to be used in combination with 
plot scale measurements (Gibbs et al. 2007, Angelsen et. al., 2009, Asner et al., 2014). 

 
Previous Research 
Satellite data has been used in regional and national biomass models. Source platforms include the 
Shuttle Radar Topography Mission (SRTM) (Kellndorfer et al. 2000), Landsat (Powell et al. 2010) and 
the Moderate-resolution Imaging Spectrometer (MODIS) (Blackard et al. 2008). The resulting gridded 
biomass data sets have a spatial resolution ranging from 30 m to 1 km. While satellite imagery is 
economical in comparison to lidar (light detection and ranging), a 3D point cloud offers a better 
depiction of the canopy structure, enabling analysts to determine tree height and geometry. 

 
A growing body of research shows that airborne lidar is one of the most promising methods for 
monitoring above ground forest carbon stocks for the REDD program (Mascaro et al., 2012). A regional 
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approach for estimating aboveground biomass is to develop a generalized relationship between forest 
canopy characteristics from lidar and biomass from plot measurements (Lefsky et. al, 2005, Seidl et al., 
2012). This method has led to efforts to detect the changes in biomass over an area, which is important 
for monitoring carbon stocks over time (Næsset et al., 2013). 

 
In the absence of a reliable method to extract the number of stems in a forested area, lidar biomass 
studies often rely upon a plot level or “crown-distributed” approach, involving the creation of a grid 
similar to those used in satellite-based studies. In contrast, a tree level or “stem-localized” approach 
places biomass in space according to the x and y coordinates of the center of each stem, similar to a 
field inventory. Mapping biomass at tree-level is beginning to offer improved possibilities for more 
direct validation of biomass estimates from past studies, as individual tree metrics can significantly 
improve AGB estimation because they directly take into account stand density (Duncanson et al., 2015, 
Turner et al., 2016). 

 
Tree level analysis is limited to lidar data sets that are rated QL1 (USGS, 2014) or better because the 
pulse density must be strong enough to detect individual tree tops, versus the canopy as a feature that 
cannot be further distinguishable (White Paper, 2013). It also requires a way to segment the lidar point 
cloud into individual trees. Automated methods to segment vegetation and delineate tree crowns from a 
lidar point cloud result in tree height and crown area (Gleason and Jungho, 2012, Li et al., 2012), which 
can be applied to a linear allometric equation to compare plot data, predicting the biomass contained in 
each tree (Bortolot & Wynne, 2005, Zhao, et al., 2012, Hailemariam et al., 2015). 

 
Project Objectives 
This study will test a method for measuring AGB at two points in time using airborne lidar collected in 
the Coast Range Mountains in western Oregon. Tree heights and crown areas will be determined 
through point cloud segmentation algorithms written by senior scientists at Quantum Spatial. Tree level 
biomass will then be calculated for a 2012 dataset with an equation derived by Andrew Gray of the US 
Forest Service using the Forest Inventory Analysis program data (Waddell and Hiserote, 2005). The 
model relies on allometric relationships in trees located in plots of similar forested areas in the region. 
Stand data from the US FIA program was used as ground truth. The methodology will then be repeated 
on a separate lidar data set collected over the same study area 6 years earlier. The two biomass 
measurements will be compared to determine the average biomass change per year over the study 
area. 

 
The specific objectives are as follows: 

 
● Develop and test a new method for estimating above ground biomass using LiDAR and FIA plot 

data. 
● Detect the change in forest coverage and biomass over a 6 year period. 
● Compare results to past studies that used other methods to estimate biomass: NBCD 

(Kellndorfer et. al., 2010), USFS (Blackard et. al., 2008) and Biome-BGC (Turner et al., 2011). 
 

Study Area 
The area of interest covers 52.76 km2 of land located in northwest Oregon in Yamhill County, with small 
portions in Tillamook and Washington counties (Figure 1). It also includes the southern portion of 
Barney reservoir. The area is comprised of actively managed, temperate coniferous forest. It is classified 
as Coast Range in the Level III Ecoregions of the United States (Omernik, 1987). The Oregon Watershed 
Assessment Manual classifies the region as “Volcanics,” with steep slopes of basalt composition. The 
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area has heavy precipitation resulting from moist air masses moving off the Pacific Ocean on to land, but 
minimal snowfall. Large wildfires are not common in this ecoregion due to coastal fog influence and fire 
suppression techniques, resulting in high stand densities. Common tree species include hardwoods like 
red alder and conifers including: western hemlock, Sitka spruce, western red cedar, and Douglas fir. The 
land use in the study area is primarily forestry-related activities. 

 
The study area was chosen in part because there are two lidar data sets covering the area, collected six 
years apart. This is a valuable data set because it allows for a change detection of biomass across the six- 
year period. It also adds value to the examination of the technique of estimating biomass on an 
individual tree level. Because the study area is an actively managed forest, the portions that were newly 
harvested and replanted during this timeframe offer a good opportunity to show growth. In contrast, a 
purely old growth forest may not necessarily show measurable change over six years. Past logging has 
had a greater influence on landscape above-ground biomass than past wildfires (Zald et al., 2016). 

 
. 

 

  
Figure 1. Study Area terrain and imagery from 2012 

 
Data and Methods 
Lidar data from 2006 and 2012 will be used in the biomass change detection analysis. The metadata 
corresponding to each original data set is provided in Table 1. 

 
Table 1. Lidar data sets to be used in the biomass change detection analysis. 

Data Set: 2006 Lidar 2012 Lidar 
Acquisition Date: Feb. 6, 2006 – Feb. 7, 2006 Sept. 23, 2012 – Oct. 4, 2012 

Sensor: Optech ALTM 3100 Leica ALS60 
Platform: Cessna Caravan 208 Cessna Caravan 208 

Coordinate System: UTM10, Meters UTM10, Meters 
Target Density: 8 pulses/m2 8 pulses/m2 

LiDAR Accuracy: 0.03 m RMSEz 0.04 m RMSEz 
File Format: LAS 1.2 LAS 1.2 

Provider: Watershed Sciences, Inc. Watershed Sciences, Inc. 
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The analysis will be performed using airborne lidar data collected in 2006 and 2012, covering an 
approximately 53 square kilometer portion of the Coast Range Mountains in western Oregon. For this 
study, tree heights and crown areas of each individual tree will be determined through point cloud 
segmentation algorithms. In addition, tree-level biomass will be calculated using an equation derived 
from allometric relationships in trees located in plots of similar forested areas in the region. 

 

 
Figure 2. Workflow Diagram 

 
 

Step 1: Prepare lidar point cloud 
At the time of collection, the lidar data sets underwent calibration techniques using aircraft-based 
kinematic GPS and static ground GPS to ensure seamless alignment of the flightlines. For this study, 
vegetation will be classified at or above 2m from the ground. 

 
Step 2: Vegetation Segmentation: Segmentation will be applied to the classified lidar data sets using 
automated tree segmentation tools written by senior scientists at Quantum Spatial, Inc. The tools apply 
point cloud geometry, spatial distribution patterns, and neighborhood analysis to delineate and 
attribute individual trees. The algorithms take advantage of the relative spacing between trees; 
specifically the fact that the horizontal spacing between trees is larger at the top and smaller at the 
bottom (Li et. al., 2012). 

 
Every estimated tree is assigned a unique ID, crown area, treetop height and coordinates. The analysis 
will include data within 30 m outside of the study area to ensure periphery vegetation is fully accounted 
for. Estimated tree crowns smaller than 1m2 will be excluded from the analysis, as they most often 
represent small shrubs or grasses. 

 
Step 3: Allometric equation for AGB 
The AGB will be calculated by reference to data from the U.S. Forest Service’s Forest Inventory and 
Analysis (FIA) Program. Andrew Gray, a Research Ecologist and FIA analyst for the Forest Service, 
designed a model to estimate live tree biomass at the tree level, based on tree height and crown area 
(Gray, 2015). Tree-level observations from FIA Program plot data was drawn from plots in the EPA level 
III Coast Range ecoregion (Omernik 1987) in Oregon, north of Douglas County. The allometric biomass 
equation was developed by Gray through a stepwise regression on simple and quadratic terms, and 
provided specifically for this study via personal communication. The steps were as follows: 
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Data compilation 
1. Selected FIA plots in the EPA level III Coast Range ecoregion that were north of Douglas County. 
2. Only used forested conditions that covered at least 75% of the plot area and were either in a conifer 
forest type or classified as nonstocked (<10% stocking in tally trees and seedlings). N=506 plots. 
3. Calculated above-ground biomass for live trees which included all above-ground wood plus foliage. 
N=14,709 trees. 
4. Calculated crown area for each live tree using equations in the Forest Vegetation Simulator (FVS) that 
estimate crown diameter from DBH (and other variables, depending on the equation) and assuming a 
circular crown. 
5. Calculated per- and crown area using the trees-per hectare values of biomass -hectare (TPH) 
expansion for each tree’s plot size and the proportion of the plot in the condition and summed them to 
the condition. Used the FVS assumption for random crown overlap to adjust canopy cover (unadjusted 
percent cover ranges up to 350%). 
6. Calculated mean tree height for dominant and co-dominant trees on each condition, weighted by 
TPH. 

 
Equation development 
1. Scatter-plot of tree biomass with height and crown area indicated some curvature to the relationship 
(Fig 3). 
2. Started with stepwise regression of biomass on simple and quadratic terms. All terms were significant, 
R^2=0.96, and the Mallow’s Cp criteria indicated using all 4 terms was fine. Equation was run without an 
intercept term (i.e., intercept =0). The final equation was: 

 
AGB (kg/m2) = (-55.53 * H) + (2.386 * H2) + (5.062 * SqM) + (0.4238 * SqM2) 

AGB = Above Ground Biomass 
H = Tree Height (feet) 
SqM = Crown Area (square meters) 

 
Step 4: Application 
The AGB equation will be applied to the lidar-derived trees (i.e. to the height and crown area of 
estimated trees) delineated from the lidar data sets, and the total biomass for the study area will be 
determined for each year. The amount of above ground carbon will then be estimated by multiplying the 
biomass by 0.5. This biomass to carbon relationship is standard in the forest industry, as described in 
Blackard et al. (2008). 

 
Step 4: Evaluate Uncertainty 
The accuracy of each lidar data set was measured against the GPS benchmarks and real-time kinematic 
ground control points that were collected during data acquisition. Vertical error of the point clouds were 
measured at 0.03m RMSE for the 2006 data set and 0.04m RMSE for the 2012 data set. 

 
To assess the accuracy of vegetation segmentation results, it is ideal to have field measurements to use 
as ground truth. However, the tree or plot locations would need to be very well rectified, usually 
requiring manual adjustment to the locations regardless of the GPS used to locate them, as satellite 
masking from the canopy is too significant to locate any one tree with GPS alone. Past projects at 
Quantum Spatial have yielded R-squared values of ~0.80 when predicting biomass using this method. In 
the absence of XY locations of the FIA data, this study will rely on a visual comparison to aerial 
photography. 
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The accuracy of the biomass equation was tested using Statistical Analysis System (SAS). Improvement in the 
regression model results in proportional increases in R-squared. Adjusted R-squared incorporates the 
model’s degrees in freedom for equations that have more than one predictor. It increases as predictors are 
added, if the increase in model fit is worthwhile. The adjusted R-squared is interpreted as the proportion of 
total variance that is explained by the model. The biomass equation resulted in an adjusted R-squared 
value of 0.9556. 

 

 
Figure 3. Tree scatter-plot of biomass with height and crown area. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Actual vs. Predicted tree biomass for FIA data. 
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Preliminary Results 
Initial results indicate that in 2012 the area of interest contained 32.59 kg/m2 of above ground biomass 
(ABG) in approximately 800,000 trees. The mean tree height was 25.9 m, mean crown area was 38.4 m2 

and mean biomass per tree was 2,142 kg. 
 

Table 2. Biomass, tree height and crown area in 2012. 
 Tree Height 

(meters) 
Crown Area 

(square meters) Biomass (kg) 

Mean 25.9 38.4 2,142.4 

Total 20,813,978 30,839,145 1,682,410,981 
 

Table 3. Results of current study compared to previous studies using other methods. 

Study Source Data / Year Biomass Carbon 

Lidar Analysis (Current 
Study) High resolution LiDAR (2012) 32.59 kg/m2 16.3 kgC/m-2 

 
NBCD (Kellndorfer, 2010) Landsat (1999-2001), NLCD (2001), SRTM 

Radar (2000), med res LiDAR (2003), FIA 31.2 kg/m2 15.6 kgC/m-2 

USFS (Blackard, 2008) MODIS 250m (2001), NCLD (2001), FIA 25.2 kg/m2 12.6 kgC/m-2 

Biome-BGC (Turner, 2011) Landsat (1985-2010), NCLD (2001), FIA 32.4 kg/m2 16.2 kgC/m-2 

 
In an actively managed forest in the Pacific Northwest, average biomass is expected to remain steady 
over time. This assumption relies on the idea that certain plots are harvested while others are replanted 
and allowed to grow. Judging by imagery analysis alone, vegetation coverage appears higher in 2000, 
which was when the satellite data for the NBCD and USFS studies was acquired. In addition, Global 
Forest Watch reports that more forest area was lost than gained in this region between 2001 and 2014 
(Global, 2015). However, when focusing on non-harvested areas it is likely that biomass was gained due 
to normal growth. A lidar-based study in conifer forests of the Northern Rocky Mountains detected an 
average biomass increase over 6 years of 0.24 kgC m-2 yr-1 for a non-harvested area (Spangler and 
Vierling, 2011). 

 
Assuming that there was less biomass each year when averaged over the study area, the current study 
using 2012 data should have resulted in a lower average biomass than the previous studies. However, it 
resulted in the highest average out of all the studies. This may indicate that the biomass calculation or 
the vegetation segmentation algorithms could benefit from further refinement. Another possible 
explanation is that since the previous studies used lower resolution data they captured a lower amount 
of ABG than actually existed at the time. Repeating the analysis with the 2006 lidar data should provide 
further insight into these possibilities. 
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Timeline 
After presenting the proposal to the Penn State World Campus Department of GIS, the analysis will be 
run on the 2006 lidar data set and the change in biomass will be detected. The write-up for submission to 
a technical journal will occur during the fall of 2016. 

 
Table 4. Planed timeline for study completion. 

 

 
 
 

Summary 
The method used in this study takes advantage of previously collected forest inventory plot data and 
remote sensing data. The preliminary results demonstrate that 8ppsm LiDAR paired with FIA plot data 
can support biomass measurements at the individual tree level. The preliminary results also fall in line 
with other studies covering the same area. One challenge to wide application of this method is the cost 
and limited availability of high-resolution lidar. However, several states have publicly available lidar data 
covering large areas that can be downloaded at no cost from a web portal, such as the Oregon Lidar 
Consortium and the Puget Sound Lidar Consortium. 

 
Customers or end users of this analysis may include forestry companies, urban planning (e.g. Tree City 
USA), government agencies and environmental organizations such as the UN-REDD program. The main 
benefit of using the technique in this study is that it requires few inputs and delivers results with high 
spatial resolution. Access to accurate biomass measurements are critical components in quantifying 
carbon stocks and sequestration rates, assessing potential impacts due to climate change, locating bio- 
energy processing plants, and mapping and planning fuel treatments (Hailemariam et al., 2015). 

May-16 Aug-16 Nov-16 

Run biomass analysis 
on 2012 lidar 
Proposal write up and 
presentation 
Run biomass analysis 
on 2006 lidar 

Change detection 

Accuracy reporting 

Write-up for journal 
submission 

Submit to journal 

Conference
presentation 

Capstone Timeline Apr-16 Jun-16 Jul-16 Sep-16 Oct-16 
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