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Abstract 

ShooƟng ranges are a source of large lead accumulaƟons, contribuƟng to rising lead levels in soil. This 

study examines measured lead levels in soil samples taken from a shooƟng range in Pennsylvania, with 

the goal of producing a conƟnuous surface idenƟfying areas exceeding the Pennsylvania Department of 

Environmental ProtecƟon limit of 450 parts per million per the Statewide Health Standard for Medium 

Specific ConcentraƟons of Inorganic Regulated Substances: Soil-to-Groundwater Values. Several data 

challenges impacted the spaƟal interpolaƟon of the measured lead levels, including an uneven sampling 

paƩern used to obtain the soil samples and an extremely skewed distribuƟon.  Several kriging methods 

were applied to delineate the extent of lead contaminaƟon with the goal of minimizing esƟmaƟon error.  

In addiƟon, several study area delineaƟons were compared to address the uneven sampling scheme. The 

study found that indicator kriging in general was able to handle the skewed distribuƟon and produce a 

lead level surface with acceptable esƟmaƟon areas.  

Introduc on 

Background 

For decades, lead levels in soil have been increasing due to human acƟvity (US EPA, 2020). This is a 

growing concern as the health effects of high lead levels are numerous, affecƟng almost every organ and 

system in the human body (ATSDR 2020). Lead does not break down, so when it gets into the soil it stays 

there (US EPA, 2020; ATSDR, 2020).  Lead in soil can impact humans in a variety of ways, including: 1) 

fruits and vegetables that are grown in contaminated soil can create toxic food and, 2) playing or 

touching bare contaminated soil can lead to exposure, which is a common source of exposure for 

children (USA EPA, 2020).  

ShooƟng ranges are recognized for being a source of large lead accumulaƟons in the environment. 

Studies on the concentraƟons of lead at shooƟng ranges have found values as high as 10,000 to 70,000 

mg/kg in soil (Sanderson et al., 2018). This is in comparison to the natural levels of lead in soil, which can 

range from 50 to 400 mg/kg (US EPA, 2015). Up unƟl 1993, there was very liƩle regulaƟon on shooƟng 

ranges from the federal government.  That changed when a U.S. Court of Appeals ruled that soil 



contaminated by lead shot could be considered hazardous waste if unclaimed (Hardison et al., 2003). 

Because of this most shooƟng ranges have adopted lead management plans, which include many ways 

to prevent lead from geƫng into or migraƟng within soil (US EPA, 2005). But in cases where lead is 

present in the soil, it is necessary to treat it to prevent further spread.  

One way lead contaminated soil is treated is through environmental remediaƟon, which involves 

removing or minimizing the lead hazard (Dobrescu et al., 2022). This is oŌen very expensive, and the 

costs can increase drasƟcally at large sites, especially if the scope of work changes throughout a project 

(Dahlem, 2021). Because of this it is crucial to characterize or esƟmate the extent of lead contaminaƟon 

as accurately as possible. CharacterizaƟon of a site typically involves taking samples and submiƫng them 

to laboratories to determine the level of the contaminant of concern at that sample locaƟon (Anderson 

Engineering, 2021). These samples represent points for an area of interest and are not a conƟnuous 

representaƟon of contaminaƟon on a site. To assist in characterizaƟon, interpolaƟon methods are oŌen 

uƟlized.  

SpaƟal interpolaƟon esƟmates the value of a variable at an unknown point based on the values of the 

variable measured at a limited set of known points. There are many spaƟal interpolaƟon methods to 

choose from, and each has different strengths and use cases. Kriging is a common approach used in soil, 

geology, and environmental science applicaƟons (GISGeography, 2022). Kriging is a stochasƟc method of 

interpolaƟon, which differs from commonly used determinisƟc methods like IDW and Nearest Neighbor 

interpolaƟon. DeterminisƟc methods assume that the data points being input are exact and use a 

determinisƟc mathemaƟcal equaƟon to carry out the interpolaƟon (O’Sullivan and Unwin, 2010). This 

means that the combinaƟon of the data, methods, and required parameters are uniquely determined. 

The chosen parameters can be argued, but otherwise the results are able to be verified and repeated. 

O’Sullivan and Unwin argue that determinisƟc methods are unrealisƟc for two reasons. First, no 

environmental measurements can be made without error as data is oŌen a snapshot in Ɵme of a 

paƩern. And second, parameters used in determinisƟc interpolators generalize phenomena and make an 

assumpƟon about the spaƟal behavior of the characterisƟc of interest.   StochasƟc methods, on the 

other hand, recognize our lack of knowledge regarding the spaƟal variaƟon of the phenomena of interest 

and allow for uncertainty in the esƟmaƟon process. StochasƟc methods, like kriging, make use of the 

spaƟal variability present in the sample data to beƩer inform the interpolaƟon approach.  StochasƟc 

methods introduce random elements into the interpolaƟon process, resulƟng in mulƟple possible 



interpolated surfaces for the same set of data and parameters. More importantly the staƟsƟcal 

significance and error of a surface can be calculated (GIS Resources, 2013). 

Kriging is a mulƟ-step process. The first step in kriging is creaƟng a variogram with the sample data to 

describe the variability of data across space (O’Sullivan and Unwin, 2010). The variogram describes the 

spaƟal dependence in the variable of interest and plots semivariance as a funcƟon of distance. 

Semivariance captures the degree of dissimilarity in the value of the points separated by a defined 

distance and the shape describes the degree of spaƟal autocorrelaƟon present in the variable.  Second, a 

mathemaƟcal model is fit to the observed semivariogram that best approximates the observed spaƟal 

dependence and allows for the predicƟon of semivariance values at all distances. This model is then 

used to determine the interpolaƟon weights. The result is an interpolated surface and the means to 

calculate an esƟmaƟon variance, which can be mapped to esƟmate the error.  

There are many different forms of kriging, reflecƟng differences in the assumpƟons made with regards to 

the underlying surface. And mulƟple kriging approaches have been used to interpolate lead in soil. 

Alexander (2016) used block kriging to determine the extent of lead at concentraƟons of 400 mg/kg. In 

this case, each block contained an esƟmated range of values which summarized the average sample 

values within the block. This method was chosen because of previous experience in applying kriging to 

developing excavaƟon plans for contaminated soil. The 30 by 30-foot blocks in their analysis 

corresponded to blocks that were excavated in the field. Francos et al. (2022) examined the distribuƟon 

of lead in soil in a contaminated area using a GeƟs-Ord hotspot analysis and then employed simple 

kriging on the z-score values resulƟng from the hotspot analysis. They chose simple kriging as the z-

scores at each locaƟon were drawn from a normal distribuƟon, which assumes that the mean is 0 across 

the study area.  They found that using interpolaƟon on their data predicted values with a high level of 

certainty. They also found that topography may play a role in how values are distributed, although they 

did not include a measure of elevaƟon in their kriging analysis. Miryousefiaval et al. (2020) used ordinary 

kriging to interpolate lead values and compared the resulƟng interpolated surface to an interpolated 

surface derived from satellite imagery. They invesƟgated several possible variogram models, for example 

Gaussian and spherical. They also used cross-validaƟon and mulƟple error staƟsƟcs, for example MAE 

and RMSE, to select the best model and produce their final interpolated surface.  It can be seen from 

these three examples that kriging is oŌen uƟlized for determining the extent of lead in soil, but that 

there is not a one size fits all method for all cases. 



Nonparametric kriging approaches have also been uƟlized to delineate lead in soil and in groundwater. 

Nonparametric approaches allow skewed or unevenly distributed data to be used for an esƟmaƟon 

without interference because of these variaƟons (Juang and Lee, 2000). Two examples of nonparametric 

approaches are indicator kriging and probability kriging. Indicator kriging takes the values of the input 

dataset and creates a binary value using a threshold. These binary values are then interpolated which 

produces a surface that indicates the probability of exceeding the defined threshold. The challenge of 

this model is that there is a loss of informaƟon when transforming the data to binary values. Probability 

kriging also uses binary values based on a defined threshold, but it also includes a secondary variable. 

This secondary variable is the original values, which inform the binary data, also making this method a 

form of cokriging (de Smith et al., 2021). This method is more complicated than indicator kriging as it 

requires that a variogram is fit to the binary data, original data, and the cross-correlaƟon values. This 

brings in more uncertainty and esƟmaƟon into the interpolaƟon (Esri, n.d.). Juang and Lee compared 

three nonparametric kriging methods to determine which performed best at delineaƟng heavy metals, 

including lead, in soil. They examined indicator kriging, probability kriging, and kriging with the 

cumulaƟve distribuƟon funcƟon (CDF) of order staƟsƟcs (CDF kriging) . They found that CDF kriging and 

probability kriging were more accurate than indicator kriging. Adhikary et. al. (2010) looked at indicator 

and probability kriging, but for heavy metals in groundwater. They found that probability kriging 

performed beƩer than indicator as well, suggesƟng that incorporaƟng order relaƟons informaƟon 

improved esƟmaƟons.  

OŌen sample data are not distributed evenly across a site locaƟon. This uneven sampling distribuƟon 

can influence which kriging or interpolaƟon method is chosen. Brus and Heuvelink (2007) aƩempted to 

create an opƟmal configuraƟon of sampling locaƟons for finding the mean highest water table across a 

site for universal kriging by aƩempƟng to minimize the variances in universal kriging. In their case study 

they found that opƟmizing the sampling locaƟons made a considerable difference in the results. Another 

consideraƟon is that the spaƟal structure of the variable itself may vary across the area of intereset.  Liu 

et al. (2021) studied straƟfied ordinary kriging on data with heterogeneity in land use types. They 

classified their site into four areas, and considered for each strata how the soil and land types were 

related to soil carbon, their variable of interest. Breaking their study area allowed them to capture soil 

carbon through a secondary variable and then run an individual variogram model for each strata. The 

assumpƟon in using straƟfied ordinary kriging is that the strata are uniform in their properƟes, so there 

needs to be high variability between strata, but low variability between the aƩribute value within the 



strata. It is worth considering when carving a site into pieces what the best way is to classify various 

sampling points.   

Goals and Objec ves 

In the case of environmental remediaƟon, the extent of contaminaƟon needs to be defined. Kriging has 

been uƟlized in many studies as a method of delineaƟng lead in soil and interpolaƟng samples that have 

not been taken in an even paƩern. This study will uƟlize spaƟal interpolaƟon to determine locaƟons 

within the shooƟng range and in the immediate adjacent areas that have lead levels over the 

Pennsylvania Department of Environmental ProtecƟon’s (PA DEP) Statewide Health Standard for Medium 

Specific ConcentraƟons of Inorganic Regulated Substances for the Soil-to-Groundwater Values. This value 

is 450 mg/kg (2021). This study will employ several kriging methods and strategies to address the uneven 

nature of the sampled data to determine which approach is the most suitable based on the minimizaƟon 

of error.  

Methodology 

Study Area 

The study area is a shooƟng range located in southwestern Pennsylvania. Currently this shooƟng range 

serves as a sporƟng clay course, which is compared to playing golf with a shotgun (NSCA, n.d.) These 

shotguns typically contain a shot with hundreds of Ɵny lead balls, which disperse in the air to create 

mulƟple projecƟles (Adventure Sports, n.d.). The study area encompasses the shooƟng range property 

and the immediate surrounding areas, which is approximately 275 acres in size. The exact locaƟon of this 

site must remain anonymous. The data has been provided from this author’s place of employment,  an 

environmental consulƟng firm. A condiƟon of using this data is that the client ’s name and locaƟon must 

be kept private.   

Data 

The main dataset used for this analysis is a set of 442 point features represenƟng soil sample locaƟons 

(Figure 1). Most of the samples were collected in a 100-foot grid paƩern, but several samples did not 

follow this paƩern especially within the shooƟng range property. Onsite, there are many gaps in the 

sampling distribuƟon, resulƟng in large gaps in the data. This was done because the property owner is 

less interested in the remediaƟon of their own property, focused instead on the offsite properƟes they 

contaminated. Each sample was collected between 0 and 6 inches below the ground surface using a 



disposable sampling trowel. Samples were then homogenized to create a representaƟve sample with the 

goal of achieving a consistent physical appearance and texture and to evenly distribute the geochemical 

characterisƟcs of the soil over the enƟre sample. This is done to eliminate or minimize analyƟcal bias 

prior to transferring the soil into laboratory provided sample jars.  The samples were collected between 

2019 and 2022.  

As menƟoned in the previous secƟon, the locaƟon of the data must be kept private.  Because of this, all 

maps made for this analysis will be made without a basemap, and at the end of the analysis all data will 

be moved to another locaƟon on the map as an extra layer of privacy. In addiƟon, any reference in the 

data that could Ɵe it back to the property owner will be removed like the names given to each sample.  

 

 

 

 

 

 

 



Figure 1: Soil sample locaƟons within the study area.  

Sta s cal Analysis 

An exploratory analysis was completed to ensure that this dataset was suitable for the kriging 

methodology outlined above. First, a histogram was made with the lead values, to determine the 

distribuƟon of the data (Figure 2).  It was evident that lead values did not follow a normal distribuƟon, 

with noƟceable posiƟve skewing and several samples displaying extremely high lead values, with outliers 

above 70,000-pmm, an already high value found at shooƟng ranges. DistribuƟons marked by posiƟve 

skewing are a common occurrence in environmental data, and oŌen follow a log distribuƟon given 

measure environmental data is bounded at 0 (Griffith, 2002). Because of this, the sampled lead levels 

were natural log transformed to beƩer approximate a normal distribuƟon. The resulƟng histogram was 

less skewed and beƩer approximated a normal curve (Figure 3), although the data transformaƟon did 

not completely remove posiƟve skewing in the data.    



Global Moran’s I was calculated for the original measured lead levels to determine the presence and 

significance of spaƟal autocorrelaƟon in the soil samples.  Neighbors were defined as all points within a 

150 feet radius of each sampled locaƟon. This was chosen because the majority of the sample locaƟons 

were collected on a 100-foot grid. The value of 150 Ō encompasses the diagonal distances between 

these sample locaƟons. The calculated Moran’s I value was 0.147343 (p ≈ 0), which indicates significant 

posiƟve spaƟal autocorrelaƟon in lead values for the dataset.  The confirmaƟon of spaƟal structure in 

the sample points confirmed the suitability of employing a spaƟal interpolaƟon approach.   

 

 

 

Figure 2: DistribuƟon of the soil sample lead values. 

 

 

 



 

Figure 3: DistribuƟon of the log-transformed lead values. 

Methods/Analysis 

This study uƟlized kriging to determine the boundary of the lead clean up area. Two kriging models were 

examined – indicator kriging and probability kriging. Indicator kriging works by taking a threshold or 

cutoff value and coding the data into zeros and ones based on that threshold (Goovaerts, 1997). The 

equaƟon for this transformaƟon is as follows, with the threshold value defined as  zk and the value of a 

specific locaƟon defined as uα :

The esƟmator for indicator kriging, which esƟmates a local indicator mean at each sampled locaƟon 

based on the defined neighborhood, is defined as follows: 



It should be noted that indicator kriging is an exact esƟmator, meaning it honors the indicator value at 

sampled locaƟons (Goovaerts, 1997). Indicator kriging produces a surface that esƟmates the probability 

of a locaƟon being above or below the designated cutoff value. 

Probability kriging, a variant of indicator kriging, also transforms the data using an indicator 

transformaƟon. However, probability kriging also takes into account the original measured values in an 

aƩempt to preserve the informaƟon lost when transforming the data to an indicator variable.  

Probability kriging can be thought of as a form of indicator co-kriging. The probability kriging esƟmator is 

defined as follows: 

To account for scaling differences between the original data values and the indictor transformaƟon, 

probability kriging replaces the original data with their standardized ranks (Goovearts, 1997).  The 

inclusion of data ranks allows the esƟmator to differenƟate samples with similar indicator transformaƟon 

values (Goovaerts, 1997).     

Each kriging method was run using the GeostaƟsƟcal Analyst tool in ArcGIS Pro. For each respecƟve 

method, the threshold value was set to 450-ppm to represent the PA DEP Statewide Health Standard. 

Variogram models were fit using a lag size of 150 Ō and 12 lags total. Gaussian models were selected for 

all variogram models.  Remaining parameters were kept as the defaults for both methods. For each 

model output, the probability surface and error surface were exported using a mask that removed the 

non-sampled porƟons of the study area.  

The study area was also broken into secƟons (i.e., strata) to beƩer reflect the sampling scheme used to 

collect data and in consideraƟon of the uneven distribuƟon of the samples. Samples were collected in 

different regions over the course of several years, resulƟng in varying sampling paƩerns across the site. 

Three secƟons were chosen, referred to as the “northern”, “southern”, and “western” secƟons (Figure 4). 

Figure 5 illustrates box plots created based on the original sampled lead levels for all three secƟons, 

showing a clear difference in the range of lead values across the different areas on site. 

Both indicator and probability kriging were re-run for each defined secƟon; i.e., northern, western and 

southern secƟons of the study area.  Individual semivariogram models were fit using only the samples 

located within the respecƟve secƟon.  This allowed each semivariogram model to be fine-tuned using a 

smaller subset of the data to beƩer reflect the sampling paƩern and spaƟal structure of lead levels 



within the individual secƟons. Most kriging parameters were set to the same values used when kriging 

across the enƟre site; e.g., indicator variables used a threshold of 450-ppm and all variograms used a 

Gaussian model. Changes were made, however, to the lag distances used to esƟmate the 

semivariograms models to beƩer capture the spaƟal structure within the individual secƟons.  The 

northern and southern secƟons had a lag size of 100 Ō with 12 total lags, while the western secƟon had 

a lag size of 100 Ō with 10 total lags. As with the outputs for the whole site, a probability and error 

surface were exported using a mask.  

 

Figure 4: SecƟoned areas. 

 

 

 



 

Figure 5: Box plots showing the distribuƟon of data for the secƟoned areas. 

 

Results/Discussion 

Figure 6 shows the probability surfaces for indicator and probability kriging run for the enƟre site and 

individually for each secƟon. The red areas indicate a one hundred percent confidence of exceeding the 

450-ppm threshold, while blue indicates a zero percent confidence. At first glance, indicator kriging 

appears to have done a beƩer job than probability kriging overall when considering the locaƟon of 

sample points that exceeded the 450ppm threshold. One area of the site where this is shown is in the 

most eastern porƟon of the northern secƟon, where samples that exceed 450-ppm are shown with a 

higher confidence and the surrounding areas are shown with lower. The probability kriging outputs do 

not show this differenƟaƟon as clearly. The excepƟon to this trend was the probability surface produced 

using probability kriging for the western secƟon, which also appears to have done well when considering 

the underlying point paƩern. Both western outputs show low confidence where points are below 450-

pmm, and high confidence where they are above.  



Figure 7 shows the accompanying error surfaces for these model runs. The green areas indicate the 

lowest errors, while the red indicate the highest errors. When considering the associated error surfaces, 

indicator kriging for the secƟoned data had the lowest overall error and was moderately successful in 

predicƟng locaƟons that exceeded the established threshold parƟcularly in the northern and western 

secƟons.  When considering kriging performance for individual secƟons, probability kriging conducted in 

the western secƟon displayed the lowest errors.   

Confidence interval thresholds were created by contouring the probability surfaces to extract the desired 

values.  This analysis was only performed on the kriging probability surfaces created using the secƟoned 

data as these probability surfaces produced the best results. Figure 8 shows extracted confidence 

intervals, where the purple contours represent a 95 percent confidence in that line being the 450-ppm 

contour and the pink contours represent a 75 percent confidence. These threshold confidence lines 

show again that indicator kriging performed best for the northern and southern secƟons, and performed 

well for the western secƟon. But that probability kriging did the best for the western secƟon. The 

indicator kriging thresholds for the northern and southern secƟons show almost every point above 450 -

ppm within the 95 percent area, and all the points for the 75 percent area. The western secƟon for 

indicator kriging did not encapsulate all the points above 450-ppm for the 95 percent area but did for 75 

percent. But probability kriging did show all these points within the 95 and 75 percent areas. Table 1 

shows a comparison of delineated areas for each method and the chosen confidence intervals. This 

shows the large variaƟons in the predicted surfaces, with the total area differing by over 1,000,000 

square feet for the total area for 95 percent. The western secƟons showed the least variaƟon between 

methods, with the differences between both confidence intervals only totaling around 10,000 square 

feet.  



 

Figure 6: Probability surfaces for whole site and secƟoned site for probability and indicator kriging. 

 



 

Figure 7: Accompanying error surfaces for the probability surfaces shown on Figure 6. 



Figure 8: Confidence threshold contours for secƟoned data for indicator and probability kriging . 

 

Table 1: Total area of delineated areas for the secƟoned data for each method.  

Method 95 % - Area (sq. ft.) 75 % - Area (sq. ft.) 

Indicator - Total 1,269,106 1,815,567 

Probability - Total 236,698 1,111,321 

Indicator - north 399,763 579,964 

Probability - north 31,890 276,799 

Indicator - west 42,536 68,132 

Probability - west 53,525 75,740 

Indicator - south 826,572 1,167,471 

Probability - south 151,283 758,579 
 

 



Table 2 shows error staƟsƟcs summarized for each error surface. RMSE represents the root mean square 

error calculated by measuring the difference between the predicted values and the actual values of the 

sample points. This is calculated using the following equaƟon:

The minimum, maximum and mean error values were determined by summarizing the resulƟng error 

surface; e.g., mean error represents average error predicted for all grid cells within the masked study 

area extent. This reflects the enƟre surface as a whole, in comparison to RMSE, which only uses the 

sample points. Mean errors were lowest for all indicator kriging models when compared to probability 

kriging models with the excepƟon of the western secƟon, confirming visual observaƟons based on the 

error surfaces. The lowest mean errors corresponded to the secƟoning of the dataset, with higher gains 

in accuracy observed for indicator kriging in northern secƟon (mean = 0.25637) and probability kriging in 

the western secƟon (mean = 0.17617). The lowest minimum errors were observed for kriging conducted 

on the secƟoned data as well, with a minimum error value of 0.00058 for indicator kriging in the

northern secƟon, 0.00532 for the indicator kriging in the southern secƟon, and 0.01956 for the 

probability kriging in the western secƟon.

While these error value minimums suggest that accurately esƟmaƟng the probability of exceeding the 

lead level threshold is possible, error value means and maximums illustrate that there were locaƟons 

within the study area that were esƟmated poorly even when secƟoning the data; for example, the 

southern secƟon had mean and maximum error values greater than 0.4 across all kriging models. One 

explanaƟon for these high error values is the sampling paƩern used to obtain lead level esƟmates. In the 

southern region, sample selecƟon resulted in a gap at the center of the secƟon. This area lacking sample 

points was poorly esƟmated. In addiƟon, it is possible that the spaƟal structure of the lead values in the 

sample set alone may not be enough to accurately esƟmate the contaminaƟon on site. It is possible that 

another key variable could be added to the model to improve the esƟmaƟon. For example, if specific 

shooƟng stands on site were used more than others, this could result in proporƟonally more lead 

landing in the shot cone of those stands. The challenge is obtaining this data, if applicable, and correctly 

incorporaƟng the data into the kriging method provided that a secondary relaƟonship even exists. 



Table 2: Summary of error staƟsƟcs 

Output Point RMSE Grid Error - Min Grid Error - Max Grid Error - Mean 

Indicator - whole site 0.42051 0.31992 0.55629 0.40820 

Probability - whole site 0.43416 0.50965 0.52164 0.51150 

Indicator - north 0.43044 0.00058 0.53857 0.25637 

Probability - north 0.43498 0.46300 0.48823 0.46835 

Indicator - west 0.38162 0.18185 0.51049 0.25601 

Probability - west 0.40656 0.01956 0.51440 0.17617 

Indicator - south 0.44083 0.00532 0.57582 0.41865 

Probability - south 0.42702 0.50679 0.51872 0.50913 

 

Indicator kriging generally performing beƩer than probability kriging was not an expected result, as 

previously cited research found esƟmaƟon improvements when employing probability kriging (Juang and 

Lee (2000); Adhikary et. al. (2010). One possible explanaƟon for the improved performance of indicator 

kriging as demonstrated in this study is that the range of sampled lead levels for this site is much larger 

than for either of those studies. This study had a range of 7.7 to 346,000-ppm, while the Juang and Lee 

study’s range for lead was 9.52 to 126.67. It appears that the binary nature of indicator kriging lessened 

the impact of the extreme outliers. The typical downside of indicator kriging is the loss of informaƟon 

when applying the indicator transformaƟon, but it appears that this may have been a benefit in this case. 

The results in the western secƟon, which saw improved performance for probability kriging, appear to 

support this convenƟon. The western secƟon had a much smaller range in lead level values compared to 

the northern and southern secƟons. The maximum lead level measured was 11,100-ppm, compared to 

346,000-ppm and 203,000-ppm for the southern and northern secƟons respecƟvely. The western 

secƟon also had a more even sampling distribuƟon; although the impact of the sampling distribuƟon on 

kriging results needs further exploraƟon.  

SpaƟal interpolaƟon based on a limited number of samples will never be a perfect representaƟon of 

contaminaƟon across a site.  And certainly, an interpolaƟon is only as good as the data it is fed. If uneven 

sample distribuƟons can be avoided when sampling plans are being made, esƟmaƟons can be improved. 



It is also criƟcal that sampling procedures honor established sampling protocols to ensure confidence in 

the measured lead levels. For this site, it is very likely that lead shot was in some of the earlier samples 

resulƟng in extreme skewing and outlying observaƟons in the lead level distribuƟon. Despite these 

acknowledged challenges, this study demonstrated that indicator and probability kriging can be 

successfully employed to esƟmate the probability of exceeding an established lead level threshold.  

Further, the creaƟon of a probability surface in both kriging methods offers flexibility in delineaƟng soil 

contaminaƟon as it allows a remediator to select a confidence level in line with the perceived risk  

determined by their client.     

Conclusion 

This study demonstrated that probability kriging and indicator kriging can produce reasonable esƟmates 

of lead soil contaminaƟon for the shooƟng range examined in this study. Indicator kriging, in general, 

outperformed probability kriging, possibly owing to the extremely skewed distribuƟon of lead levels in 

the measured sample points.  SecƟoning the site into strata also resulted in improved esƟmaƟons, as 

secƟoning allowed the kriging model to account for differences in the spaƟal structure of lead levels 

across the site.  Moving forward, care should be taken when planning sample locaƟons to ensure they 

are as evenly distributed as the site will allow. But when this is not possible, the results reveal that 

indicator kriging may help delineate remediaƟon areas where probability kriging fails.  
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