Spatial Analysis of Pertussis Outbreaks and Herd Immunity in the USA

May 6, 2014 GEOG 596A Ryan Warne

Advisor: Dr. Justine Blanford

Agenda

- Pertussis Overview
- Herd Immunity
- Objectives
- Data
- Other Health GIS Examples
- Methodology
- Limitations
- Timeline

Pertussis (Whooping Cough)

Respiratory disease caused by *Bordetella pertussis* bacteria Transmitted via airborne droplets (coughing/sneezing) Vaccine-preventable

Whooping cough is on the rise

- ~16 million cases & 195,000 deaths world-wide per year
- ~10k-40k cases & 10-20 deaths in USA per year

Approximately 50% of children <1 y are hospitalized

Source: Centers for Disease Control and Prevention, http://www.cdc.gov/pertussis

Why Are We Seeing Increases?

- Improved diagnostic testing and better reporting (CDC 2012)
- Waning effectiveness of the vaccine itself (CDC 2012)
- Cyclical Outbreaks (CDC 2012)
- Decreased perception of disease danger and severity (Kennedy 2011)

- Increase of parents delaying or fore-going vaccination due to personal beliefs or apathy about vaccinations (Lundquist 2010)

Exemptions due to religious, philosophical and medical reasons 1991-2004

- Nonmedical exemptions rose from 0.98% to 1.48 in USA
- Religious exemptions remained around 1%
- Philosophical or personal belief exemptions increased from 0.99% to 2.54% in states allowing personal belief exemptions

(Omer et al., 2009)

Reported NNDSS pertussis cases: 1922-2013*

*2013 data are provisional.

SOURCE: CDC, National Notifiable Diseases Surveillance System and Supplemental Pertussis Surveillance System and 1922-1949, passive reports to the Public Health Service

Reported pertussis incidence by age group: 1990-2013*

SOURCE: CDC, National Notifiable Diseases Surveillance System and Supplemental Pertussis Surveillance System

Source: The National Institute of Allergy and Infectious Diseases (NIAID)

Herd Immunity

- Protect the population from disease
- Minimize outbreaks through high levels of immunity
- Different diseases have varying thresholds of herd immunity

Herd Immunity Thresholds for Vaccine Preventable Diseases

 $R_{\scriptscriptstyle 0}$ is the basic reproduction number, or the average number of secondary infectious cases that are produced by a single index case in a completely susceptible population.

Disease	Transmission	R	Herd immunity threshold
Mumps	Airborne droplet	4–7	75–86%
Polio	Fecal-oral route	5–7	80–86%
Rubella	Airborne droplet	5–7	83–85%
Smallpox	Social contact	6–7	83-85%
Diphtheria	Saliva	6–7	85.00%
Measles	Airborne	12_18	83_94%
Pertussis	Airborne droplet	12-17	92–94%

Anti-Vaccination & Disease Rebound

Anti-vaccine movement is giving diseases a 2nd life

Apr. 8, 2014 | 0 Comments

Similar to smallpox (now eliminated) in the 19th century, reduction in vaccinations led to resurgence of smallpox

Smallpox fell between 1802 and 1840 through vaccination Resurgence of smallpox in 1850's vaccination decreased leading to disease outbreaks throughout 1870's

1905 – Jacobson v. Massachusetts

Smallpox % deaths in Berlin

http://www.ewi-ssl.pitt.edu/econ/files/courses/110908_misc_smallpoxgraphs.pdf

(Omer et al 2009)

Objectives

(1) Explore the spatial distribution of pertussis cases and exemptions throughout the USA

- Areas with positive or negative trends

(2) Compare and contrast pertussis incidence over the past 5-10 years in 2 states.

- Investigate the relationship between vaccination rates (i.e. herd immunity) and pertussis

- Characterize demographic composition in these areas

Cases of Pertussis in the USA 1993-2012

PBEs:

WA, CA, ID, UT, CO, AZ, ND, MN, WI, MI, OH, TX, OK, AR LA, VT, ME

Vaccination Exemptions

- All states allow medical exemptions for schoolchildren
- 48 states allow religious exemptions
- 17 states allow philosophical or person belief exemptions (PBE)

Varying degrees of difficulty to receive PBEs

http://www.nvic.org/Vaccine-Laws/state-vaccine-requirements.aspx

Pertussis Incidence Over the Past 20 Years California & Florida

California - Averaged1,960 cases / year

- highest annual number of cases in the USA
- Cyclical outbreaks in last 20 years with 1.5 19.3 cases/100,000 population
- Current outbreaks in 2014

Florida

- Averaged 290 cases / year
- Average number of cases annually in the USA
- Stable number of cases in last 20 years with < 3 cases/100,000 population

Pertussis Cases in California (1947 – 2013) and Florida (1963 – 2012)

*Includes cases reported to CDPH as of 2/4/2014

Source: Florida CHARTS, Florida Department of Health & California Department of Public Health

Pertussis Incidence by County – California & Florida

Source: FloridaCHARTS.com provided by the Florida Department of Health, Division of Public Health Statistics & Performance Management California Department of Public Health

Source: FloridaCHARTS.com provided by the Florida Department of Health, Division of Public Health Statistics & Performance Management, California Department of Public Health

Variation exist across the states, within counties, and within school districts and communities

Nevada County

Sonoma County

Measles Outbreak San Diego, 2008

1 infected child exposed 839 people to measles and caused 11 new cases (all in unvaccinated children)

Variables statistically evaluated using chi-square and regression testing

Higher exemption rates correlated to higher median income (\$88k vs. \$53k)

Source: Sugerman, 2010

Rotavirus in Berlin, Germany 2007-09

Spatial Bayesian regression models for statistics

Link found between hospitalization rates from Rotavirus and 1) Percent unemployment in the neighborhood & 2) Percentage of children attending day care

Methodology

Data:

- Number pertussis cases available at county level in Florida (2009-2012) and California (2010-2013)
- Number kindergarteners immunized and exempted by school district/city/county
- Number of kindergarteners by school district/city/county
- US Census Bureau demographic information from 2010 census

Ideally like to perform analysis at address level but may be unlikely. Instead analyze data at smallest scale possible.

Analysis:

Examine the correlation between immunization coverage and pertussis incidence.

Explore relationship between socioeconomic factors: unemployment, income, median age, population density WITH pertussis cases AND PBEs (simple & multivariate regression analysis). Test for significance using Chi-Square.

Limitations

Data:

Range of years available for data between FL and CA

Level of geographic detail for ideal analysis

Exemption and immunization data is for kindergarteners but pertussis cases by county/state is for the entire population

Analysis:

Cyclical nature of disease may cause statistically significant results one year but not another

Expected Outcomes

Identify critical areas with high pertussis numbers both by volume and cases per 100k population

Identify critical areas with little to no herd immunity

- Find a correlation between exemption areas and pertussis outbreaks
- Find a correlations between socioeconomic factors (education/income/ethnicity, etc.) and pertussis outbreaks

Suspect the rates are too low in Florida to drawn statistically significant results, but not the case in California

Timeline

May – July : Data collection and analysis
Aug – Oct : Analysis of data
Oct – Dec : Writing of capstone project

Presentation Venue: ESRI Health GIS Conference, Nov. 3-5 Colorado Springs, CO Deadline to submit abstract is August 1, 2014

Paper outlet: International Journal of Health Geographics

Acknowledgments

Dr. Justine Blanford - PSU Laura Rutledge, RN, BSN – FI. Dept. of Health Valerie Warne, MD

Sources

California Department of Public Health

Centers for Disease Control and Prevention

U.S. Census Bureau

Florida Department of Health

- Kennedy, A., LaVail, K., Nowak, G., Basket, M., Landry, S., (2011). *Confidence About Vaccines In The United States: Understanding Parents' Perceptions.* Health Affairs 30(6):1151-1159.
- Lundquist, L. (2010). Whooping cough risingin vaccine-averse idaho. *McClatchy Tribune Business News*. Retrieved from http://search.proquest.com/docview/731783684?accountid=13158

The National Institute of Allergy and Infectious Diseases

National Vaccine Information Center

- Omer, S., Salmon, D., Orenstein, W., deHart, P., Halsey, N. (2009). Vaccine Refusal, Mandatory Immunizations, and the Risks of Vaccine-Preventable Diseases. The New England Journal of Medicine. 360:1981-8
- Sugerman, D., Barskey, A., Delea, M., Ortega-Sanchez, I., Bi, D., Ralston, K., Rota, P., Waters-Montijo, K., LeBaron, C. (2010). *Measles Outbreak in a Highly Vaccinated Population, San Diego, 2008: Role of the Intentionally Undervaccinated.* Pediatrics. 125(4):747-755.

The University of Pittsburgh, http://www.ewi-ssl.pitt.edu/econ/files/courses/110908_misc_smallpoxgraphs.pdf

Wilking, H., H"hle, M., Velasco, E., Suckau, M., Eckmanns, T., (2012). *Ecological analysis of social risk factors for Rotavirus infection in Berlin, German, 2007-2009. International* Journal of Health Geographics 11(1):37-48.

Thank You! Question? IMMUNIZE FOR A HEALTHY FUTURE **PROTECT** Protect yourself: get the vaccines you need, when you need them. World Health Organization