
GeomAttribute
A QGIS Attribute Table with a Geometry Column

Philip Whitten

Jan 26, 2019

GeomAttribute: A QGIS Attribute Table with a Geometry Column

An Attribute Table with a geometry describing column that illuminates those geometries with empty or
null values for the active vector layer in a QGIS workspace.

This QGIS 3 plugin is licensed under the GNU General Public License v3.0.

The plugin's development repository is on Github: https://github.com/PhilipWhitten/geomAttribute

The plugin can be downloaded from the QGIS repository: http://plugins.qgis.org/plugins/geomAttribute

The help documentation is hosted online: http://philipwhitten.github.io/geomAttribute

The initial version of the plugin was created in 2018 by Philip Whitten as part of a Penn State MGIS
Capstone Project supervised by James O'Brien.

Python scripts contained within this documentation were tested using the Sphinx doctest extension
(https://www.sphinx-doc.org/en/master/usage/extensions/doctest.html) using a standard network instal-
lation of QGIS version 3.2.2 in a Microsoft Windows environment.

https://github.com/PhilipWhitten/geomAttribute
http://plugins.qgis.org/plugins/geomAttribute
http://philipwhitten.github.io/geomAttribute
https://www.sphinx-doc.org/en/master/usage/extensions/doctest.html

CONTENTS:

1 Preface 1

2 Introduction 3

3 Background 5
3.1 Relational Datasets . 5

3.1.1 Geospatial Dataset . 6
3.2 Geometry Data Types . 6
3.3 Geometry Data Values . 8

3.3.1 Empty . 8
3.3.2 null . 11

3.4 QGIS . 13
3.4.1 QGIS Data Providers . 13

3.5 GIS Professional Awareness . 16
3.5.1 Exposing null or Empty Geometry Values in QGIS 16

4 QGIS Data Provider Data Parsing Problems 19
4.1 Parsing Geometry Data Types . 19

4.1.1 Data Provider Geometry Type Errors . 21
4.2 Parsing Empty and null Geometry Data Values . 22

4.2.1 Instantiation of Empty Geometry Values by QGIS 22
4.2.2 Changing of Empty data Values by parsing 22
4.2.3 Inadvertently Creating Empty Geometries within QGIS 23
4.2.4 Instantiation of null Geometry Values by QGIS 24
4.2.5 Retrospective Incorporation of Empty and null Values Into GDAL 24

5 Aim 27

6 Plugin Design 29
6.1 Geometry Describing Expression . 29
6.2 Attribute Table Creation . 30
6.3 Putting Icons into the Attribute Table . 31
6.4 Plugin Window . 33
6.5 Plugin Help Files . 33
6.6 Future Development . 33

7 Tools Included With This Plugin 35
7.1 Geometry Attribute Table . 35

7.1.1 Use . 35
7.2 Load Data . 36

i

7.2.1 Use . 37

8 API 39
8.1 modelVectorLayers module . 39
8.2 parseQGISGeometry module . 39
8.3 zipGeomAttribute module . 40

9 Changelog 41
9.1 Version 0.1.0 . 41
9.2 Version 0.1.1 . 41

Bibliography 43

ii

CHAPTER

ONE

PREFACE

I am in the closing stages of a MGIS at Penn State and needed a topic for a capstone project. What sort
of topic? I am gainfully employed as a GIS Officer at a local government bureau, but, my employer
was not willing to offer a topic nor were they willing to offer open access to curious datasets. I have a
passion for maps, cartography and spatial analysis, but, previous attempts to combine my passion with
requirements for academia often ended in a feeling of futility. From my employment, I realised that my
colleagues and I occasionally loose hours because some of our datasets were corrupted by null or empty
geometries. I also realised that I was blissfully ignorant of the concept of null and empty geometries as
they were not included in my GIS education. So, I wanted to learn a bit about null and empty geometries
in the hope that I can be more capable in my employment and so that I can feed a curiosity.

The concept of a QGIS plugin that exposed null and empty shapes evolved quickly. A plugin is tangible
and deliverable as opposed to curiosity which is instinct and always expanding. QGIS is the primary
desktop GIS software where I work and I was keen to learn how to automate and develop QGIS for
specific tasks. In my GIS degree we had used Python to automate tasks in ArcMap, and, C# to make
apps for ArcMap, but, we had not dabbled in QGIS. So, this project was also an adventure in QGIS
scripting.

What comes next? From this project I have learnt that much of the GIS software and the GIS community
is GIS centric. After all, to create a new record in a dataset with either QGIS or ArcMap one creates
the shape of a feature, and, subsequently populates the other attributes. To work in reverse and create
the shape of a feature as the last step in a workflow is not only unconventional, but, also nontrivial. But
here’s the point, whenever I have to create geospatial records I am always given a list of attributes and
the shape is the last attribute to be created, the other attributes are already known and are re-entered.
Furthermore, most of the major desktop GIS packages report set operations between datasets differently
to established database conventions. I would like to work towards making QGIS and other software
packages less GIS centric so that geospatial datasets become more ubiquitous and more open to other
professional communities! To become less GIS centric you need to embrace the null and exploit the
empty.

1

GeomAttribute
A QGIS Attribute Table with a Geometry Column

2 Chapter 1. Preface

CHAPTER

TWO

INTRODUCTION

A dataset is a collection of records, where each record has a defined number of elements and the data
type of each element is defined. The elements are commonly referred to as attributes. For example, the
dataset of street names shown in Table 2.1 consists of records that have the attribute headings of “Name”
and “Street Type” with the data types letters and spaces and letters respectively. In this example, Street
Type contains values from the set {‘Lane’, ‘Road’, ‘Street’, ‘’}. The first three values ‘Lane’, ‘Road’
and ‘Street’ are obvious – but what about the last value of ‘’? ‘’ is a deliberate empty set of character
values! In our world there are many streets that have no type, and, indeed there are many that have no
name. Here, the use of an empty set of characters, or ‘’, indicates that the Street Type attribute has no
type, not that the type is unknown (null).

Table 2.1: An example of a road name dataset.

Name
(letters and spaces)

Street Type
(letters)

Picton Road
Menangle Street
The Boulevard 1

Geospatial datasets contain one or more values that refer to a location on earth. For the majority of
geospatial datasets, the location consists of one or more points, lines, and/or polygons, that are refer-
enced to a coordinate system that is a projection of the earth’s surface.

For this project, any dataset element type that stores the geospatial shape with respect to a referenced
coordinate system is called a geometry. Any empty geometry element is a geometry that doesn’t have
any of the vertices which are required to construct a shape.

In many organizations geospatial datasets are contained within enterprise databases where frequently
the same brand of enterprise database is used elsewhere within the same organization to contain non-
spatial datasets. For example, a local government office may use one or more MicroSoft SQL Server
installations as a dataset repository for: a content management system; a customer relationship manage-
ment system; a land management system; an asset management system; and, a Geographic Information
System (GIS).

QGIS [3] is a computer program that among other things is used to view, create and edit the geometry
values within geospatial datasets. For many data sources QGIS does not: Parse null and empty geometry
values equivalently for different data storage formats; does not directly show which records within a

1 The street name Boulevard is also a type of street, consequently the Street Type field is empty.

3

GeomAttribute
A QGIS Attribute Table with a Geometry Column

dataset have null or empty geometry elements; and, does not always process null and empty geometry
elements as specified by international or open geospatial standards.

A conceptual description of datasets, geometry data types, and, null and empty data values are outlined
in the Background section.

4 Chapter 2. Introduction

CHAPTER

THREE

BACKGROUND

The concepts of relational datasets in general, and, of geospatial data values and data types are intro-
duced. An emphasis is placed on empty and null geospatial data values. QGIS software is also intro-
duced. Specific QGIS problems that are associated with geospatial data values and data types are kept
within the QGIS Data Provider Data Parsing Problems section.

3.1 Relational Datasets

A set is a collection of distinct objects. For example, a box of apples is a set of apples, and, the set of
countries in North America contains: Canada; United States of America; and, Mexico. By convention,
sets are symbolized by enclosing within curly brackets. Hence:

𝑁𝑜𝑟𝑡ℎ 𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛 𝐶𝑜𝑢𝑛𝑡𝑟𝑖𝑒𝑠 = {𝐶𝑎𝑛𝑎𝑑𝑎, 𝑈𝑛𝑖𝑡𝑒𝑑 𝑆𝑡𝑎𝑡𝑒𝑠 𝑜𝑓 𝐴𝑚𝑒𝑟𝑖𝑐𝑎,𝑀𝑒𝑥𝑖𝑐𝑜}

A dataset is any set where each element is restricted to one data type and where each element belongs
to the same universal set.

A relational dataset is a collection of sets where:

1. The number of objects (elements) in each set is the same; and,

2. A one to one relationship exists between elements of different sets.

An example relational dataset showing the Country Name, Country Abbreviation and Country Popu-
lation for the countries in North America is shown in Table 3.1. This relational dataset comprises of
the three sets: country names; country name abbreviations; and, country populations. A one to one
relationship exists between the elements for each of these three sets. Hence, the country with the name
of Canada has a one to one relationship with the country abbreviation CAN and the country population
3563000. The combination of the relationship and the set values for a specific country is represented as
a row in a table that is referred to as a record.

Table 3.1: Example of a North America Countries dataset.

Country Name
(letters and spaces)

Abbreviation
(3 upper case letters)

Population
(integer)

Canada CAN 3563000
United States of America USA 32663000
Mexico MEX 12458000

Essential to any set is a definition or description of what type of objects can be a member. For example,
an apple which is a valid type of the set of fruit can’t be a member of a set of countries. For any dataset,

5

GeomAttribute
A QGIS Attribute Table with a Geometry Column

both the data type and additional constraints are often used together to define the universal set. For
example, the data type for Country Name in Table 3.1 is any combination of letters and spaces, whilst
the data type for Abbreviation is any combination of 3 upper case letters.

Although a relational dataset consists of multiple sets of data where the elements of each set are related,
it is ubiquitously referred to as a dataset.

3.1.1 Geospatial Dataset

A geospatial dataset refers to any dataset where one or more of the composite sets refer to a location on
the earth’s surface. This project scope is restricted to those geospatial datasets where the location on the
earth’s surface is represented by one or more points, lines or polygons that are located by vertices (co-
ordinates) and stored as vectors. These points, lines and polygons are collectively referred to as shapes
or geometries6. Datasets that include one or more sets of geospatial vectors are referred to as Vector
Datasets by the GIS community. A vector geospatial dataset is a subtype of geospatial dataset where the
geospatial sets can be located graphically on the earths surface by the application of coordinates.

3.2 Geometry Data Types

All datasets contain some restriction on the type of data each constituent set may contain. From a
software perspective, a restriction of type is essential for minimizing both the storage size of the dataset
and the response time for a dataset query. Analagous to specific data types for storage of numbers, text
or dates there are data types specifically used for the storage of geospatial geometries [5]. Similarly,
just as there can be specific data types for numbers including signed and unsigned integers, float, and,
decimal numbers, there are also specific data types for different types of geometries, with the type often
referring to how the geometry is constructed.

For any data source the geometry data types that are availabe for use can be shown schematically as a
hierarchy like the one shown in Fig. 3.1. Within this hierarchy, the possible data types are described by
the labels in the boxes. Essential to all such hierarchy’s, a set of data of a declared type may consist of
any type below it on the hierarchy. Hence for the hierarchy shown, if a set of data has a declared type of
Geometry Collection then any data element within it may consist of Geometry Collection, Multi-Point,
Multi-Curve, Multi-Line, Multi-Surface, and, Multi-Polygon. Similarly, if a set of data has a declared
type of Point than it may not contain a Polygon nor a Line as neither are below the sub-type Point on the
hierarchy.

The single part constrained geometry subtypes in the lower part of Fig. 3.1 are referred to as Primitive
Types and must contain only one single part geometry per set element. In contrast, the Multiple Parts
geometries may consist of one or many parts per feature. For example, a feature of the “Multi-Point”
geometry sub type may have one point, no points or multiple points. Another characteristic of the
single part primitive types is that the Line and Polygon subtypes may only exist of straight line segments
between coordinates.

In reality there may be many more geometry subtypes than the simplified hierarchy shown in Fig. 3.1.
For example, some common additional subtypes for datasets are created for sets of geometries that
incorporate elevation, or, for lines that are constructed from curves as opposed to straight line segments.
In another variation, some geometry hierarchy’s including Microsoft SQL server and QGIS don’t isolate
primitive geometry sub-types from non-primitive sub-types.

Many GIS data source standards, and, many GIS software have a geometry subtype hierarchy that is
similar with Fig. 3.1, including the inheritance diagram for QGIS’s QgsAbstractGeometry2 [12].

6 For SQL relational databases, the term geometry is restricted to those shapes that are located by cartesian coordinates.
2 https://qgis.org/api/classQgsAbstractGeometry.html

6 Chapter 3. Background

https://qgis.org/api/classQgsAbstractGeometry.html

GeomAttribute
A QGIS Attribute Table with a Geometry Column

Fig. 3.1: GIS Geometry subtype hierarchy. Adapted from [5]. The more conventional term “LineString”
that is used in the QGIS API and [5] is replaced here with “Line” for clarity.

3.2. Geometry Data Types 7

GeomAttribute
A QGIS Attribute Table with a Geometry Column

3.3 Geometry Data Values

For any data type there exists a universal set of valid values. For example, a set of birthday dates must be
restricted to valid dates. Hence, a birthday on the 30th of February is not valid as the 30th of February is
not part of the universal set of dates. Similarly, a valid geometry should be located within the boundaries
of the coordinate system that it is referenced to. Empty and null are two values that may be part of
many sets of data and for geometry data values could be fairly described as being:

1. controversial;

2. miss-understood; and,

3. best avoided.

3.3.1 Empty

A box of apples can be described as a set of apples. An empty Apple box represents an empty set of
apples. An empty geometry element is a geometry that has no coordinates. Whether an empty element is
a valid member of a set depends on the context. For example, if a study of chickens hatching from eggs
recorded the date that each chicken hatches for a set of 10 eggs, than the hatch date element for each egg
is empty before the chicken hatches. It is known that the chicken has not hatched.

All empty set values including an empty geometry data value are place holders for when it is known that
an element does not exist [21]. For example, consider the intersection [10] of the Blue Crosses and the
Red Circles with the two squares shown in Fig. 3.2. Both of the Blue Crosses B1 and B2 intersect the Left
square, and, the Blue Cross B3 intersects the Right square. The intersections of the Squares and Blue
Crosses, and the Squares with Red Circles are summarized by the datasets shown in Table 3.2 and Table
3.3. As shown in Table 3.2 the Left Square intersects with the Blue Crosses B1 and B2 as represented
by the subset {B1, B2}. Similarly, it is reported in Table 3.3 that the Left square intersects the subset of
Red Circles {R1}. In contrast, also in Table 3.3 it is shown that the Left square does not intersect with
any Red Circles as shown by the empty set { }. Here the empty set { } shows that it is known that no
intersection occurs. The reporting of those combinations where intersections are known to not occur
as shown in Table 3.3 follows the convention used by most SQL type relational databases for all set
intersections regardless of whether they are geospatial or not. In contrast, the convention for many GIS
desktop software including QGIS and ArcGIS is to only show those combinations where intersections
are known to occur (are True). Table 3.4 follows the geospatial intersection convention of QGIS and
shows only those combinations in Table 3.3 that do intersect. Analyzing those sets that don’t intersect
(empty sets) can be insightful for data workflow problem solving .

Fig. 3.2: The location of Blue Crosses and Red Circles in the “Left Square” and the “Right Square”.

Table 3.2: The intersection of the Squares and the Blue Crosses.
Square Blue Crosses
Left square {B1, B2}
Right square {B3}

8 Chapter 3. Background

GeomAttribute
A QGIS Attribute Table with a Geometry Column

Table 3.3: The intersection of the Squares and the Red Circles.
Square Red Circles
Left square {R1}
Right square { }

Table 3.4: The intersection of the Squares and the Red Circles
where the intersection is True.

Square Red Circles
Left square {R1}

The real utility of empty geometry values is realised when the intersection of all the squares and both
types of points (Red Circles and Blue Crosses) are collated in one dataset as shown in Table 3.5 as
opposed to Table 3.6. By using the empty set { } as a place holder for the known non-intersection of
Red Circles with the Right square the sets of Blue Crosses and Red Circles are maintained as separate
columns in Table 3.5. Although this approach is efficient and intuitive it is not suitable when there are
a large number of point types as the number of columns has a linear relationship to the number of point
types.

Table 3.5: The intersection of each point type set and the set of
squares. Note that the point type sets are maintained as separate
sets (columns).

Square Point type
Blue Crosses Red Circles

Left square {B1, B2} {R1}
Right square {B3} { }

Table 3.6: The intersection of all point types and the squares with
one combined set of point types, and, where the intersection is
True.

Square Point type Geometry
Left square Blue Crosses {B1, B2}
Right square Blue Crosses {B3}
Left square Red Circles {R1}

Datasets With Multiple Geometry Sets

Much of the GIS community work with the restriction of a single geometry set per dataset (a single
geometry column within a table). It is difficult to have multiple geometry attributes without also allowing
empty geometry values. Next, I will examine the advantages and disadvantages of multiple geometry
attributes.

The fundamental advantage of multiple geometry attributes is they facilitate topology. Topology refers
to how the constituent parts of a system are interrelated or arranged. The location of points within
squares shown schematically in Fig. 3.2 is an example of topology as it shows how the points are related
to the squares. Table 3.5 shows the topological association of point type by square type, but, uses two
geometry columns to do so. Table 3.6 shows all of the True intersections shown in Table 3.5 using
only one geometry column. Examination of Table 3.6 reveals that the relationship between a type of
point (e.g. Blue Crosses) and the Square type (e.g. Left Square or Right Square) has to be reported as

3.3. Geometry Data Values 9

GeomAttribute
A QGIS Attribute Table with a Geometry Column

two separate relationships (two separate records) and a user is left with the task of mentally associating
these two relationships. Clearly, without using multiple geometry columns establishing topological
relationships is less intuitive.

A major disadvantage of multiple geometry columns is that they are not supported by many GIS software
or GIS data sources. For example, ArcGIS does not support multiple geometry columns in any capacity,
QGIS treats each geometry column as an unrelated dataset, and, the ubiquitous shapefile can only contain
one geometry column. So, by adopting multiple geometry columns a user potentially isolates themself
from a significant portion of the GIS community.

Set Operations in Microsoft SQL or PostGIS Produce Empty Geometry Values

There are several fundamental set operations that are used to construct new sets from existing sets re-
gardless to what it is a set of [17]. Within a database, it is ideal if a set operation is consistent for all
data types, regardless of whether they are geospatial or not. As introduced in the section Empty some
databases generate empty geometry values for intersection set operations. Other universal set opera-
tions include Union and Except. Microsoft SQL Server and PostGis are examples of databases that can
generate empty geometry values for set operations. Both of these databases were developed from SQL
conventions and their generation of empty values for geometries is consistent with set operations for
other data types.

Consider the intersection of the points Pt1 and Pt2 with the circle shown in Fig. 3.3 which is an example
of an intersection between two geometry datasets. ‘Pt1’ lies within the circle, and, hence intersects the
circle. Pt2 lies outside the circle and does not intersect it. In both QGIS v3.x and ArcGIS desktop, the
intersection of a points dataset containing {Pt1, Pt2} and a dataset containing the circle will return only
those records that intersect, hence, only Pt1 is returned. In contrast, with Microsoft SQL Server, the
intersection returns both the records that do and don’t intersect with a dataset containing both Pt1 and
Pt2.

Fig. 3.3: A schematic of the intersection of points Pt1 and Pt2 with the circle.

There is no error with either of the different approaches to intersection taken by QGIS 3.x and Microsoft
SQL Server. QGIS 3.x includes the selection logic step that removes those records that don’t intersect.
For Pt2, Microsoft SQL server is returning an empty geometry confirming that no intersection exists, as
shown by the following Transact-SQL script5:

DECLARE @circle geometry = 'CURVEPOLYGON (CIRCULARSTRING (0 1, 1 2, 2 1, 1
→˓0, 0 1))';
DECLARE @Pt2 geometry = 'POINT (3 1)';
SELECT @Pt2.STIntersection(@circle).ToString();
GEOMETRYCOLLECTION EMPTY

This intersection example shows the ease with which one can inadvertently generate empty geometry
values in Microsoft SQL Server, and, these empty geometry values will be parsed to QGIS.

5 In both Microsoft SQL server and PostGis the geometry type that is empty is recorded [20][22]). Sometimes the geometry
type gets changed to the generic ‘GEOMETRYCOLLECTION’ by set operations.

10 Chapter 3. Background

GeomAttribute
A QGIS Attribute Table with a Geometry Column

3.3.2 null

null is the most common value (element) recorded by many disciplines and data sources for unknown
data values7. For example, if a study of chickens hatching from eggs recorded the hatch date of each
chicken hatching for a set of eggs, then for a specific egg the hatch date value is null (unknown) if the
hatch date was not recorded, but, the chicken has hatched. Strictly speaking a null hatch date can be any
value from the universal set of hatch dates including Empty allowing for eggs that never hatched.

The most useful feature of null values is that they enable incomplete datasets. For example, consider the
Blue Crosses dataset shown in Table 3.7 where the coordinates for B4 are unknown. Datasets like Table
3.7 can stem from requests to georeference existing datasets where the georeferencing is incomplete.

Table 3.7: The age, size and coordinates for Blue Crosses.
Blue Cross Age (years) Size Coordinates
B1 2 Big {1, 1}
B2 2 Small {2, 2}
B3 3 Small {4, 2}
B4 8 Big null

Using Joins to Eliminate null

Many GIS datasets do not allow null geometries. Having a dataset constraint that prevents null geome-
tries does not imply that all geometries are known, it only means that the dataset can’t have a null geom-
etry data value. The prevention of null geometries without knowing all of the geometries is achieved by
using multiple datasets that include a geometry only dataset that has a relationship with a non-geometry
dataset as shown in Fig. 3.4. The relationship is typically achieved by the use of a unique value key
that is used in all related datasets to distinguish each relationship across the datasets. Joins refer to the
process of forming a new dataset from multiple datasets by the use of a relationship. The dataset shown
in Table 3.7 can be created from the datasets shown in Fig. 3.4 by application of an outer join.

Fig. 3.4: Table 3.7 presented as two separate datasets where null Coordinates data values are not per-
mitted in the geospatial dataset. The Blue Cross keys are used to register relationships symbolised by
the grey dashed lines between specific records in the two datasets.

The use of a geospatial specific dataset with a key like that shown in Fig. 3.4 enables geometry to be a
variable. For example, take the Blue Cross B1. This Blue Cross may represent a boat at sea. Hence, at
different points in time, B1 may have different coordinates (Table 3.8). Most geospatial datasets have

7 Python uses None instead of null, but, PyQT uses NULL as a QVariant, so, PyQGIS scripts may have a mixture of None
and NULL depending on the origin of the classes in use.

3.3. Geometry Data Values 11

GeomAttribute
A QGIS Attribute Table with a Geometry Column

geometries that are variable as our technology for recording and referencing location is improving. For
example, an allotment of land may be static as it is relative to reference points, but, the mapped location
and hence the recorded geometry for the allotment of land will change as the location of the reference
points is refined to a higher accuracy. Whether a dataset owner should track changes to a geometry is a
dataset specific question.

Table 3.8: The coordinates of the Blue Crosses for yesterday and
today.

Blue Cross Coordinates
Yesterday Today

B1 {1, 1} {2, 2}
B2 {2, 2} {1, 2}
B3 {4, 2} {4, 1}

Reasons For Preventing null Geometries

The reasons for preventing null geometries include: GIS feature creation is simpler without null geome-
tries; null geometries can’t be mapped; and, Boolean logic can’t be applied to null values.

For QGIS and many desktop GIS systems, records are created by drawing the geometry and subsequently
entering the record’s other data values. This geospatial geometry centered approach intuitively keeps the
related computer programming simple in comparison to any approach that allows a user to enter any of
the data values including the geometry in the sequence that they choose.

There is no accepted universal approach to mapping a null geometry. It is obvious that if a geometry is
null then using a defined symbol at a single location is a miss-representation. There is active research
into approaches for mapping the unknown [23].

Whether a dataset permits null values directly affects the type of logic applied to the dataset for set
operations. Boolean logic, also referred to as two value logic, allows only for True or False answers
to set operations. Boolean logic can’t be applied when the answer is unknown. When null values
are permitted, Three Value logic is required for set operations. The intersection of the squares with
the two subsets of Blue Crosses {B1, B2, B3} and {B1, B2, B3, B4} that are described in Table 3.7 is
shown in Table 3.9. For {B1, B2} it is True that they intersect the Left square, whilst it is also True
that B3 does not intersect the same square, however, it is null (unknown) whether B4 intersects the Left
Square. Compounding the implementation of Three Value logic is the fact that different database sources
have different implementations of it differently leading to it’s widespread avoidance. The different
implementations of Three Value is not specific to geometry data values and is a problem for all data
value types including generic types like integer or date [19][25]. In summary, even when null values are
permitted in datasets, the records associated with them are typically excluded from set operations.

Table 3.9: The intersection of the squares with the set {B1, B2, B3,
B4} as shown in Table 3.7 using different types of logic.

Logic Test Square
Left Right

Boolean True {B1, B2} {B3}
False {B3} {B1, B2}

Three Value True {B1, B2} {B3}
False {B3} {B1, B2}
Unknown {B4} {B4}

12 Chapter 3. Background

GeomAttribute
A QGIS Attribute Table with a Geometry Column

Reasons For Allowing null Geometries

Although the majority of GIS systems do not promote the use of null geometry data values, there are
several reasons supporting their adoption: they assist the adoption of geospatial datasets by enterprise
databases; they illuminate the unknown; they facilitate a simpler dataset structure; and, many GIS sys-
tems allow null for other sets.

Facilitating the adoption of geospatial datasets by enterprise databases is a compelling reason to employ
null geometry values. For example, consider a commercial database used for land rates (also known
as land taxes) at a local government office. The current approach of many rates databases is to mimic
Fig. 3.4 where the tables for the land registry are maintained within a non-spatial land registry database,
and, the tables for the georeferenced land allotments are in a GIS database with the databases being
joined. This approach facilitates bureaucracies where separate teams of people maintain each database,
and, where the land registry database does not adopt spatial functionality as the data is located in a
separate database. Whilst using a separate GIS database allows the local government office freedom to
acquire practically any common GIS system, it comes at a cost of minimal inbuilt spatial capability in
the non-spatial land registry software.

Allowing null has the potential to expose the unknown. By exposing the unknown, it it is evident where
further data capture is required, and, it is more likely that any spatial analysis will also establish the
degree of dataset completeness.

A disadvantage of the lookup table approach is the required maintenance of lookup keys and database
schema that are essential for performing database queries that include spatial and non-spatial attributes.
Without lookup tables the database structure is simpler leading to fewer errors and fewer joins when
constructing queries.

Many GIS systems allow null values for non-geometry sets (for example null values for age in an asset
dataset), but, disallow them for a geometry set within the same dataset. Excluding null from sets that are
not unique keys on a piecemeal basis can cause confusion. The rational for using null values should be
consistent for all non-key sets within a dataset, and, within a database.

3.4 QGIS

QGIS is self-promoted as an “Open Source Geographic Information System” [3]. QGIS is used for
creating, manipulating and publishing spatial data sets by many organisations. QGIS was created by
Gary Sherman in 2002 [16][27]. In 2007 it became a project of the Open Source Geospatial Foundation
with version 1 being released in January 2009 [16]. The version of QGIS used in this project, Version
3, was released in February 2018 [16]. Version 2 of QGIS employed Python 2 for scripting and PyQT4
for the Graphical User Interface (GUI). Version 3 of QGIS employs Python 3 for scripting and PyQT5
for the GUI. QGIS version 3 is self-described as a “huge overhaul and cleanup” of QGIS version 2 [9].
Many of the Python scripts configured for version 2 of QGIS no longer work with version 3 with much
of the legacy sub-version support dropped.

A feature that distinguishes QGIS from many desktop GIS platforms including MapInfo and ArcMap
is that QGIS does not incorporate or associate with a custom data source. For example, MapInfo is
associated with TAB files and ArcMap is associated with file and personal geodatabases. In contrast to
MapInfo or ArcMap, QGIS has a data source provider philosophy which it uses to provide a consistent
user interface for a broad range of data sources.

3.4.1 QGIS Data Providers

A data provider is a software library that reads, writes, executes commands and queries one or more
data sources. These data sources may be as simple as a text document or spreadsheet, or, complex like a

3.4. QGIS 13

GeomAttribute
A QGIS Attribute Table with a Geometry Column

SpatiaLite or PostGis database. Analysis software packages may have many data providers so that they
can access a wide range of data sources.

Each data source has different combinations of data values and data types, and, also different commands
that can be executed. Some data providers service several different data sources, whilst, others service a
single data source. For GIS, data providers need to negotiate different collections of geometry sub-types,
and, different approaches to null and empty data values. It is the QGIS data provider’s task to:

• provide algorithms to parse data values between external data source sub-types and QGIS sub-
types; and,

• for some data sources the association of geometry sub-types and it’s parsing is per record, not per
dataset.

For example, an ESRI Shapefile has only 4 instantiable geometry sub-types and does not permit empty
geometry values within it’s specification (Fig. 3.5). In contrast, a Microsoft SQL server spatial database
has 10 instantiable geometry sub-types and permits both null and empty geometry values (Fig. 3.6). A
software package that has providers for both ESRI’s Shapefile and Microsoft SQL server spatial database
needs to provide a common user experience that is independent of the provider being used as much as
feasible.

A software user may need to be aware of the differing complexity of different data sources and the
provider’s which interact with them if the software engaging the provider does not provide warnings
or messages when data types and values are changed in situ to provide a smooth and consistent user
experience. Note that for reading data sources, any in-situ data changes are only for presentation or
analysis and are not written to the data source.

Fig. 3.5: The hierarchy of geometry types for a ESRI shapefile excluding those that include elevation or
measurements (adapted from [18]). The Shape Type geometry type can’t be instantiated directly and is
included for consistency.

QGIS parses data to and from many data sources. The algorithms for this data parsing are contained
within 18 different data providers. The data providers are scripted within C++ and are excluded from
the QGIS Application Programming Interface (API) [14]. To function, the relevant data provider needs
to read and write each data type and the appropriate values for each set (column) included in the dataset.
The intent of this data parsing is that a user may read, write and analyse data stored in different sources
with a common QGIS user interface.

4 In many SQL databases there are duplicate hierarchy’s with separate geometry data types for cartesian and geographic
coordinates.

14 Chapter 3. Background

GeomAttribute
A QGIS Attribute Table with a Geometry Column

Fig. 3.6: The hierarchy of geometry types for Microsoft SQL server excluding those that contain eleva-
tion or measurements (adapted from [7])4. Types that can be instantiated are in black rectangles. Types
that can’t be instantiated are in red ellipses.

3.4. QGIS 15

GeomAttribute
A QGIS Attribute Table with a Geometry Column

Qgis’s data provider approach allows QGIS to edit, create or analyse geospatial datasets within enter-
prise databases in their native format. For example, SMEC Pavement Management Software3 can be
configured to use a Microsoft SQL server database to contain it’s pavement datasets. By way of a data
provider, QGIS can browse and edit the geometries contained within a SMEC pavement dataset without
importing or exporting any dataset, and, without creating additional tables in any database.

In comparison to QGIS’s approach of editing the data in it’s native format, ESRI’s ArcMap requires a
user to import a dataset into a geodatabase prior to editing, even though the enterprise database and the
geodatabase may be using the same database server [15]. ESRI’s approach often leads to lookup tables
being used for geospatial data that are joined to non-spatial datasets.

3.5 GIS Professional Awareness

Many GIS professionals are educated and work within GIS dataset schema where both null and empty
geometries are excluded. It is plausible that GIS professionals that are not familiar with null and empty
shapes are ignorant of them when using a GIS where they are permitted. This is a situation that con-
fronted the proponent of this project. Examples of miss-understanding of null and empty geometry
values are widespread on the world wide web. For example, although the coordinates of a null geome-
try are unknown, an article published by ESRI incorrectly states that an empty geometry exists for any
geometry where the coordinates are unknown [2].

Micosoft SQL server and PostGis both permit null and empty geometry values unless explicitly excluded
by constraints or third party software. Even when a primary dataset contains no null or empty geometry
values, processing of that dataset may produce null or empty geometry values. Performing set operations
like intersections using database methods, and, editing geometry of specific records within QGIS are two
ways empty geometry values can be created.

3.5.1 Exposing null or Empty Geometry Values in QGIS

Within QGIS, without using custom expressions or scripts there are only limited scenarios where a user
will be alerted to null or empty geometry values when they are present. Two tools within QGIS where
you may find descriptive information of each record are the “Attribute Table” and the “DB Manager”
plugin.

Without using expressions and creating new attributes, the “Attribute Table” does not contain any infor-
mation about a record’s geometry. The only component of the “Attribute Table” that exposes empty or
null geometries is when a user selects “Zoom to Feature” for a specific record that has a null or empty
geometry. In QGIS version 3.x, a warning message is shown on the map canvas when a user attempts to
zoom to a feature with an empty or null geometry (Fig. 3.7).

The DB Manager in QGIS 3.x is a core plugin (it can’t be uninstalled). The DB Manager plugin provides
database specific information for data sets from a limited number of database sources that includes
PostGIS, but, excludes Microsoft SQL Server. The “Table” view within DB Manager shows all of the
columns within the table including the geometry attribute. Within the geometry column it gives the
geometry type and exposes null geometries as “NULL” (Fig. 3.8). In contrast, empty geometries are
referred to by their geometry type. Note that the DB Manager’s approach is theoretically correct as null
geometries have an unknown geomtry type, whilst empty geometries have a known geometry type.

3 http://www.smec.com/en_au/what-we-do/sectors/transport/pavement-management-systems

16 Chapter 3. Background

http://www.smec.com/en_au/what-we-do/sectors/transport/pavement-management-systems

GeomAttribute
A QGIS Attribute Table with a Geometry Column

Fig. 3.7: A warning message is displayed in QGIS when a user attempts to zoom to a record with an
empty geometry.

Fig. 3.8: The output from the DB Manager plugin in QGIS 3.x for a dataset that contains both empty
and null geometry values.

3.5. GIS Professional Awareness 17

GeomAttribute
A QGIS Attribute Table with a Geometry Column

18 Chapter 3. Background

CHAPTER

FOUR

QGIS DATA PROVIDER DATA PARSING PROBLEMS

The parsing of datasets by QGIS data providers is silent and can change both geometry sub-type and the
geometry data values of null and Empty (Table 4.1).

Changes of geometry sub-type may be required because the data source doesn’t support the mixing of
specific sub-types, or, because the source sub-type may not be supported at all. For example, in Table
4.1, neither Geopackage nor Spatialite permit the mixing of Line and Multi-Line subtypes, so, the data
provider defaults to the Multi-Line subtype for the creation of a new dataset, and, all records with a Line
subtype are changed to a Multi-Line subtype. In an another example, Shapefile does not support the Line
subtype at all, with all records with a Line subtype changed to a PolyLine9.

For geometry data vales of null and empty, values are changed as the data source does not permit both
types, or, because the data provider contains errors. In Table 4.1 it is shown that with the exception
of the PostGis format, either the parsing of the known geometry data value of empty is changed to the
unknown value of null, or, visa versa. The replacement of known with unknown, or unknown with
known can cause erroneous analysis and interpretation. Without experience errors may be introduced
into datasets by the parsing of data by QGIS’s data providers.

Table 4.1: Appending of non-empty single part multi-line, non-
empty line, empty line and null geometry records by QGIS to 5
popular data sources.

QGIS memory Geopackage Shapefile Spatialite14 PostGis12 MS SQL12

Multi-Line Multi-Line Polyline Multi-Line Multi-Line Multi-Line
Line Multi-Line Polyline Multi-Line Line Line
Empty Empty null Empty Empty null
null Empty null Empty null null

4.1 Parsing Geometry Data Types

The parsing of geometry records by the QGIS data providers often requires changing the geometry sub-
type. For example, consider the parsing of geometry subtypes between ESRI’s Shapefile, QGIS, and,
SpatiaLite (Fig. 4.1). SpatiaLite and Shapefiles have a single geometry sub-type defined for a dataset13

which is simpler than data sources like Microsoft SQL Server and PostGIS where the geometry sub-type
can vary for each record.

9 A Shapefile’s PolyLine is essentially the same as a Multi-Line for the scope of this report.
14 SpatialLite table has a Multi-Line geometry data type.
12 The geometry type saved by PostGis and Microsoft SQL server depends on: geometry constraints within the database;

the use of a Geometry columns lookup table; and, what geometry types already exist within the respective datasets.
13 Technically in a Shapefile the geometry sub-type is recorded for each record, but, the technical specifications state that

“All non-null shapes must be of the same shape type” [18].

19

GeomAttribute
A QGIS Attribute Table with a Geometry Column

The hierarchy for the ubiquitous Shapefile shown in Fig. 3.5 is vastly different to that for QGIS [12].
For constructing a single part line, QGIS has the four geometry subtypes of “Multi-Line”, “Circular-
String”, “Compound-Curve”, and, “Line”, whereas Shapefile only has the single subtype of “Poly-
Line”8. Hence, in a QGIS editing session, a user may create a line using any of QGIS’s four line
subtypes, but, the line will only be recorded as a “PolyLine” and it is the Provider’s task to inform QGIS
of this requirement (Fig. 4.1).

In comparison to a Shapefile, SpatiaLite has the Multi-Line and Line sub-types and QGIS has to dis-
tinguish between these. The manner in which QGIS distinguishes between a Multi-Line and a Line for
parsing to SpatiaLite is primitive. A single part QGIS Multi-Line can’t be parsed to a SpatiaLite Line
as the provider refers to the geometry type and not the number of parts, but, a “Line” will be converted
to a Multi-Line by silently changing it’s geometry type if it is parsed to a SpatiaLite Mutli-Line data
source. In a similar manner, Circular-String and Compound-Curve sub-types will be converted to Line
sub-types, and then Multi-Line sub-types if required. Some of the geometry sub-type changing may con-
fuse unwary users, for example, a SpatiaLite Line data source read by QGIS and saved as a SpatiaLite
Multi-Line is silent and without error or warning, however, the newly created SpatiaLite Multi-Line can’t
be then saved as a SpatiaLite Line by QGIS without the use of a tool that changes the geometry type to
Line, even though each Multi-Line only has one part.

Editing existing geometries or creating new geometries creates similar challenges for parsing geometry
types. Any geometry edit or creation has to occur on a QGIS geometry sub-type and then parsed to the
data source. In an edit process, QGIS will allow incompatible geometries to be created and it is only
when the edited geometries are attempted to be committed to the data source that QGIS either throws an
error or changes to a compatible geometry sub-type.

Fig. 4.1: The association of various geometry Line sub-types for SpatiaLite, QGIS and Shapefile: grey
arrows refer to changes in geometry sub-type within QGIS prior to committing data; black arrows indi-
cate data parsing between QGIS and the external data sources.

8 The QGIS types were renamed here for clarity. The actual QGIS types are QgsLineString, QgsCircularString,
QgsCompoundCurve, and, QgsMultiLineString.

20 Chapter 4. QGIS Data Provider Data Parsing Problems

GeomAttribute
A QGIS Attribute Table with a Geometry Column

4.1.1 Data Provider Geometry Type Errors

There is a great diversity in both the refinement and development of each QGIS data provider. As QGIS
is opensource, the varying levels of refinement of different data providers may reflect communities of
users or the commissioning of developers. Given the complexity of the data providers task of parsing
datasources to and from QGIS, it is not surprising that there are many unexpected errors originating
from the data parsing process.

For example, for a memory data source, QGIS allows the mixing of primitive and multi-part geometries
of the same dimensionality. The insertion of a Line geometry subtype record into a Multi-Line geometry
subtype for a QGIS memory data source is demonstrated by Python script using the QGIS API:

>>> from qgis.core import *
>>> layerMulti=QgsVectorLayer('MultiLineString?crs=epsg:4326&
→˓field=ID:string', 'a', "memory")
>>> providerMulti=layerMulti.dataProvider()
>>> recordWrite = QgsFeature()
>>> recordWrite.setAttributes(['1'])
>>> recordWrite.setGeometry(QgsGeometry.fromWkt('LINESTRING (1 1, 6 1)'))
>>> providerMulti.addFeature(recordWrite)
True
>>> recordRead = layerMulti.getFeature(1)
>>> print(QgsWkbTypes.displayString(recordRead.geometry().wkbType()))
LineString
>>> print(QgsWkbTypes.displayString(layerMulti.dataProvider().wkbType()))
MultiLineString

More worryingly, as shown in the next Python script, the reverse is also possible. One may add a feature
with a Multi-Line geometry sub-type into a Line QGIS memory dataset.

>>> from qgis.core import *
>>> layerSingle=QgsVectorLayer('LineString?crs=epsg:4326&field=ID:string',
→˓'b', "memory")
>>> providerSingle = layerSingle.dataProvider()
>>> recordWrite = QgsFeature()
>>> recordWrite.setAttributes(['1'])
>>> recordWrite.setGeometry(QgsGeometry.fromWkt('MULTILINESTRING ((1 1, 6
→˓1), (1 2, 6 2))'))
>>> providerSingle.addFeature(recordWrite)
True
>>> recordRead = layerSingle.getFeature(1)
>>> print(QgsWkbTypes.displayString(recordRead.geometry().wkbType()))
MultiLineString
>>> print(QgsWkbTypes.displayString(layerSingle.dataProvider().wkbType()))
LineString

Fortunately with a QGIS memory dataset you can’t insert a Point into a Line dataset, or, otherwise mix
geometry sub-types of different dimensionality.

>>> from qgis.core import *
>>> layerSingle=QgsVectorLayer('LineString?crs=epsg:4326&field=ID:string',
→˓'b', "memory")
>>> providerSingle = layerSingle.dataProvider()
>>> recordWrite = QgsFeature()
>>> recordWrite.setAttributes(['1'])
>>> recordWrite.setGeometry(QgsGeometry.fromWkt('POINT (1 1)'))

(continues on next page)

4.1. Parsing Geometry Data Types 21

GeomAttribute
A QGIS Attribute Table with a Geometry Column

(continued from previous page)

>>> providerSingle.addFeature(recordWrite)
False

4.2 Parsing Empty and null Geometry Data Values

The instantiation process for empty and null data values in QGIS is very different dependent on whether
the value is empty or null.

4.2.1 Instantiation of Empty Geometry Values by QGIS

An empty geometry is a geometry value with an empty set of vertices. Hence, an empty Line geometry
value is distinct to an empty Multi-Line geometry value. As the geometry sub-type is associated with
an empty value, the method for instantiating empty geometries is embedded within each geometry sub-
class that can be instantiated. Unfortunately, there is some variation with how QGIS instantiates empty
geometry values across different geometry subclasses.

Using the QGIS API, empty geometries for several geometry types can be instantiated by instantiat-
ing the relevant QgsAbstractGeometry subclass without a set of vertices. For example, to test that a
QgsLineString() is empty:

>>> from qgis.core import QgsLineString
>>> QgsLineString().isEmpty()
True

Although empty geometries can be created for most geometry types with the QGIS API by instantiation
without a set of vertices, it is not currently possible to instantiate an empty point geometry using this
approach (Table 4.2). As demonstrated below, the well known text representation of the call to instantiate
an empty point reveals that QGIS is wrongly adding a vertex with the coordinates of (0 0) [8]10.

>>> from qgis.core import QgsLineString,QgsPoint
>>> print(QgsLineString().asWkt())
LineString ()
>>> print(QgsPoint().asWkt())
Point (0 0)
>>> print(QgsPoint().createEmptyWithSameType().asWkt())
Point (nan nan)

Table 4.2: Testing whether an empty geometry has been created by
the instantiation of various types of QgsAbstractGeometry
subclasses using the Python Console in QGIS 3.0.3.

Input Output
QgsPoint().isEmpty() False
QgsLineString().isEmpty() True
QgsPolygon().isEmpty() True
QgsGeometryCollection().isEmpty() True

4.2.2 Changing of Empty data Values by parsing

As indicated in Table 4.1 empty geometry values are changed to null when parsing to Microsft SQL
server or Shapefile data sources. For a Shapefile, this change in data value maybe the most pragmatic

10 a Point (nan nan) is also reported when an empty PostGis point is parsed by QGIS.

22 Chapter 4. QGIS Data Provider Data Parsing Problems

GeomAttribute
A QGIS Attribute Table with a Geometry Column

outcome as empty geometries are not included in it’s specification. For the Micrsoft SQL Server data
source, the change from empty to null occurs when parsing to or from this data source [28] although
both QGIS and Microsoft SQL Server specifications include empty geometry data values. In contrast to
Microsoft SQL Server, empty and null values are parsed to and from PostGIS without fault or change.

4.2.3 Inadvertently Creating Empty Geometries within QGIS

Within QGIS, an empty geometry is created by using the “Vertex Tool” to delete all vertices of an existing
shape. A user unfamiliar with QGIS may incorrectly assume that deleting all the vertices of a geometry
also deletes the record. This mistake of assumed record deletion when deleting vertices is most likely
to occur for geometries with single part points as the geometry disappears from view when the first and
only vertex is deleted. Hence, when editing a shape, a QGIS user may unintentionally create an empty
shape when they are attempting to delete the shape.

In QGIS null Implies Empty

In the definition of empty geometry values in section Empty it is articulated that an empty geometry is
just one valid value in the set of valid values for the geometry data type. In contrast, null indicates that
the geometry value is unknown and that the value can be any value from the set of valid values. Hence,
an empty geometry values is one of many possible values for a null geometry. For example, for a point,
the vertices of an empty point are { } as it has no coordinates, and, the vertices of a null point are {𝑥 𝑦}
where 𝑥 and 𝑦 are both variables designating unknown coordinates. These definitions are consistent
with SQL relational databases. Unfortunately, the application of null used by SQL relational databases is
different to that used by both mathematics for set theory, and, by most computer programming languages
[6].

Let’s consider the definition of null for set theory and computer programming using a common example.
If one has a box of apples and a box of bananas, then the intersection of the two boxes of fruit is an
empty box. For set theory, null – nothing is what you have when you take away the box.

Similar to set theory, for most object-oriented computer programming languages, an object that has
not been instantiated is null. Hence, a pointer to something that doesn’t exist is null. In comparison,
an empty object is an object that has been instantiated but not populated, for example, a list with no
members, or, a box with no fruit.

So, from the perspective of an object-oriented computer programming language, null means no value and
no type. Hence, a null object is an object that does not exist and does not occupy space in a computer’s
memory. Indeed, SQL relational databases implement null as an object that doesn’t exist, so, the context
difference between unknown and nothing does not have to create conflict.

The underlying conflict is based on logical deduction. It has been proved that an empty set is a subset
of any set. Some argue that on object that doesn’t exist can’t contain anything, so, it must be empty11.
Hence, null is a subclass of empty. This argument is flawed as by arguing that a null object is empty you
have just created an object. A null object neither contains anything nor has a container.

Unfortunately, many computer programming languages and QGIS follow a convention where something
must also be empty if it is null. QGIS employs the logic that a null geometry is also an empty geometry
[13]. The QGIS test for null in it’s C++ code simply asks whether the object exists (whether it points to
anything) [13]:

144 bool QgsGeometry::isNull() const
145 {

(continues on next page)

11 Unable to find a high quality reference for this argument. Several private conversations with C++ programmers reveal
that this logic is common and is frequently used to test for empty in C++.

4.2. Parsing Empty and null Geometry Data Values 23

GeomAttribute
A QGIS Attribute Table with a Geometry Column

(continued from previous page)

146 return !d->geometry;
147 }

Now, the QGIS test for empty in it’s C++ code performs the same test as for null, and, returns True if
the test for null returns True [13]:

329 bool QgsGeometry::isEmpty() const
330 {
331 if (!d->geometry)
332 {
333 return true;
334 }
335
336 return d->geometry->isEmpty();
337 }

Hence, a test for an empty geometry in QGIS will return True for all null and empty geometry values.

>>> from qgis.core import QgsFeature
>>> recordNull, recordEmpty = (QgsFeature() for i in range(2))
>>> recordEmpty.setGeometry(QgsGeometry.fromWkt('LINESTRING ()'))
>>> # Only recordNull has a null geometry
>>> recordNull.geometry().isNull()
True
>>> recordEmpty.geometry().isNull()
False
>>> # Both recordNull and recordEmpty have empty geometries
>>> recordNull.geometry().isEmpty()
True
>>> recordEmpty.geometry().isEmpty()
True

4.2.4 Instantiation of null Geometry Values by QGIS

To claim a null geometry value has been instantiated in QGIS is a faux pas. null represents the absence
of a value, so, a record with a null geometry value is a record without a geometry value. null infers that
an object (in this case a geometry value) has not been instantiated.

4.2.5 Retrospective Incorporation of Empty and null Values Into GDAL

The Geospatial Data Abstraction Library (GDAL) is ubiquitous within most GIS Software to translate
and process geospatial data. Handles for empty geometries were not part of the original GDAL speci-
fication, with empty geometries being treated as null. The retrospective incorporation of empty handles
into GDAL has not been picked up by many applications that employ GDAL, and, even within GDAL
there are many processing tools that don’t maintain empty geometries.

Many of the current GDAL set operators continue to convert empty geometry values to null geometry
values even when the set being operated on has successfully implemented the empty geometry handle
on parsing to GDAL. For example, for the intersection operation the output is “a new geometry rep-
resenting the intersection or NULL if there is no intersection or an error occurs” [4]. Curiously, the
same GDAL geometry class has a handle to assign an empty geometry, or, to test for an empty geom-
etry [1]. On another GDAL ticket register it is stated “GML/WFS: by default does not advertise NOT
NULL fields since we treat empty strings as being null for historical reasons. By setting the open op-
tion EMPTY_AS_NULL=NO, empty strings will be reported as such and NOT NULL fields might be

24 Chapter 4. QGIS Data Provider Data Parsing Problems

GeomAttribute
A QGIS Attribute Table with a Geometry Column

advertised” [24]. It is clear that GDAL was not originally intended to distinguish between null and
empty.

The retrospective addition of handles for empty geometry values in GDAL was mimicked by QGIS.
Consequently, within QGIS there are many tools that convert empty values to null during their operation.

4.2. Parsing Empty and null Geometry Data Values 25

GeomAttribute
A QGIS Attribute Table with a Geometry Column

26 Chapter 4. QGIS Data Provider Data Parsing Problems

CHAPTER

FIVE

AIM

QGIS is a capable and popular GIS desktop software that changes both empty and null geometry values,
and, geometry type during both data parsing and data processing. Some of these data changes are
necessary to comply with different data source requirements. These changes in data are likely to catch
recent QGIS adopters unaware and may lead to errors and losses in productivity.

The primary aim of this project is to expose those records with null and empty geometry values. A
secondary aim of this project is to expose the geometry type per record.

If successful, this project will be a stepping stone towards:

• increasing GIS professional awareness of null and empty geometry values;

• illumination of QGIS data parsing errors when they occur so that developers may address them;
and,

• integrating GIS within organizational databases by embracing QGIS’s open and flexible data
providers.

27

GeomAttribute
A QGIS Attribute Table with a Geometry Column

28 Chapter 5. Aim

CHAPTER

SIX

PLUGIN DESIGN

A QGIS plugin was created that generates an attribute table with a geometry describing column for the
active vector layer in a QGIS workspace. The created geometry describing column is a mixture of two
data types combining both geometry data values and geometry data types. Icons are used for geometry
data types to create an intuitive language independent graphical interface.

The plugin is constructed with Python script using Python 3.x. By intention, current QGIS classes and
methods are used as much as possible to reduce script complexity and to be resilient to new versions of
QGIS. Initially the plugin was created with the QGIS plugin Builder Tool [26].

The main conceptual processes of the plugin are shown in Fig. 6.1 and are described in the following
sections.

Fig. 6.1: The key processes in the Geometry Attribute Table plugin.

6.1 Geometry Describing Expression

The geometry describing expression can be accessed by the parseQGISGeometry module in the API,
and, is shown below:

@qgsfunction(args='auto', group='Custom', usesGeometry=False)
def geometryField(feature, parent):

THIS DOCUMENTATION IS NOT BE SHOWN BY THE SPHINX AUTODOC DIRECTIVE
"""

(continues on next page)

29

GeomAttribute
A QGIS Attribute Table with a Geometry Column

(continued from previous page)

Creates a QGIS expression called geometryField. This expression
returns a string that represents the geometry in the following
order of decreasing precedence:

* Null

* Empty

* Well known binary type string

Returns:
A string that represents the geometry.

"""
geom = feature.geometry()
Creates Point(0 0)
emptyPoint1 = QgsPoint()
Creates Point(nan nan)
emptyPoint2 = emptyPoint1.createEmptyWithSameType()
Null has to be tested for before empty as QGIS treats all null
geometries as empty
if geom.isNull():

return 'Null'
elif geom.isEmpty():

return 'Empty'
Specific tests for empty points.
elif geom.type().__eq__(0) and geom.vertexAt(0).__eq__(emptyPoint1):

return 'Empty'
elif geom.type().__eq__(0) and geom.vertexAt(0).__eq__(emptyPoint2):

return 'Empty'
else:

return QgsWkbTypes.displayString(geom.wkbType())

This expression is performed per individual record (feature). This expression has a string data type
output. A few characteristics of this expression are:

1. it needs to test for null geometry values before empty geometry values;

2. it has specific tests for empty point geometry values as these are given the set of vertices {0 0} or
{nan nan} by QGIS depending on how they are instantiated;

3. It reports the feature’s geometry data value when the geometry is empty or null, otherwise, it
reports the feature’s geometry type; and,

4. in the output, geometries with elevation (z values) or with measurements (m values) will still be
distinguished from those without either.

This expression is used to populate a virtual field called “Geometry” that is appended to a vector dataset.
A virtual field is a computed field that exists in memory only and is not written to the datasource. As the
virtual field is appended to the vector layer, it may be viewed or used wherever a virtual field is present
in QGIS. For example, when the window created by the plugin is open, the created “Geometry” field is
included as a column in the standard Attribute Table.

6.2 Attribute Table Creation

The attribute table shown by the plugin is created by a process that is analogous to the standard QGIS
Attribute Table. Basically, a cache of the dataset is made, and a model of the dataset is constructed so
that Qt’s model-view [11] approach can be applied. When a piece of software outputs a table display
of a data source, the software needs to replicate each data item and keep a synchronization between

30 Chapter 6. Plugin Design

GeomAttribute
A QGIS Attribute Table with a Geometry Column

the original and the replication. Qt’s model-view reduces both the replicated dataset’s size and reduces
the computing resources required for synchronization between the primary and replicated datasets. The
following script is contained within the run(self) method that is within the geomAttribute class
in the geomAttributeRun module of this plugin:

Create a cache of the vector layer data of size 10000
Cache geometry is true by default
For example: print(self.vector_layer_cache.cacheGeometry())
self.vector_layer_cache = QgsVectorLayerCache(self.layer, 10000)

QgsAttributeTableModel is a subclass of QAbstractTableModel
self.attribute_table_model = QgsAttributeTableModel(self.vector_layer_
→˓cache)

Within the same run(self) method of the geomAttribute class a filter is applied to the model of
the dataset to cater for situations where selections are made:

The QgsAttributeTableFilterModel() is used to synchronize any
→˓selection.
self.attribute_table_filter_model = QgsAttributeTableFilterModel(
self.iface.mapCanvas(), self.attribute_table_model)

6.3 Putting Icons into the Attribute Table

Qt’s item delegate function is used to replace the string field in the virtual “Geometry” column in the
plugin’s Attribute Table. This delegate function does not affect the same virtual field where it is used
outside of the plugin’s Attribute Table. For example, the output of the same virtual field in the standard
QGIS Attribute Table remains a string. Icon’s only replace strings for geometry types that contain the
strings listed in Table 6.1 which are contained within a Python dictionary in the script. Any geometry
type that doesn’t contain a string shown in Table 6.1 will remain as a string. For example, a string value
of CircularString, CompoundCurve or GeometryCollection will remain unchanged and not be replaced
by an icon. As the script searches for strings that contain the string: the string-switched-icon represents
all variations of a geometry subtype including those that contain elevations or measurements; and, the
order of searching and hence the order of dictionary keys is essential. For example, a search for Point
would return True for MultiPoint as the string Point is contained within MultiPoint. So, MultiPoint needs
to be searched for prior to Point.

Strings instead of icons are only used for empty and null geometry values with the application of back-
ground colors for several reasons.

For empty, there are several notations to represent an empty set including { } and ∅. Neither of these
notations for empty sets are widely known outside of mathematics and many QGIS users may not un-
derstand them without investigating. To aid interpretation, the string empty is kept in the Attribute Table
with a background color of dark yellow. The use of tooltips for empty geometry data values is one
possible approach in the future to use the empty set notation of ∅ instead of the string empty.

One possible symbol for null is 𝑥 which normally refers to an unknown variable, but, null refers to an
unknown set of variables, not a single variable. Imieliński and Lipski proposed the use of “@” for null
[19], however, this was not adopted by other researchers. As there is no universal symbol for null, the
string null was used in combination with a background color of red.

6.3. Putting Icons into the Attribute Table 31

GeomAttribute
A QGIS Attribute Table with a Geometry Column

Table 6.1: The strings that are replaced with icons by the item
delegate function.

Precedence Geometry Type
1 MultiPoint
2 Point
3 MultiLine
4 Line
5 MultiPolygon
6 Polygon

The Python script that exchanges geometry type strings with icons, and, changes the background color
of Empty and null geometry value strings is contained within the paint method in the myDelegate
class of the geomAttributeRun module, as shown below:

def paint(self, painter, option, index):
"""
This method paints the geometry column attributes with icon's for
display in the Plugin's Attribute-Table window.

Args:
option(QStyleOptionViewItem):
painter(QPainter):

"""

value = index.data(Qt.DisplayRole)

iconDict = {
"MultiPoint": "point_2x",
"Point": 'point_1x',
"MultiLine": 'line_2x',
"Line": 'line_1x',
"MultiPolygon": 'polygon_2x',
"Polygon": 'polygon_1x'

}

Equivalent to "for iconKey in iconDict:"
geometry = next(filter(value.__contains__, iconDict.keys()), None)
if geometry is not None:

icon = QIcon(':/plugins/geomAttribute/icons/{}.png'.
→˓format(iconDict.get(geometry)))

icon.paint(painter, option.rect, Qt.AlignCenter)
else:

Set background color
painter.setPen(QPen(Qt.NoPen))
backgroundColor = Qt.lightGray
geometry = next(filter(value.__eq__, ['Null', 'Empty']), None)
if geometry is not None:

if value.__eq__('Null'):
backgroundColor = Qt.red

else:
backgroundColor = Qt.darkYellow

painter.setBrush(backgroundColor)
painter.drawRect(option.rect)
Set text color - order is important.

(continues on next page)

32 Chapter 6. Plugin Design

GeomAttribute
A QGIS Attribute Table with a Geometry Column

(continued from previous page)

If done before background color will not show.
painter.setPen(QPen(Qt.black))
painter.drawText(option.rect, Qt.AlignCenter, value)

6.4 Plugin Window

The attribute table produced by the plugin is contained within a Qt Window. The preliminary plugin
created by the QGIS Plugin Builder plugin instantiated a Qt Dialog. This Qt Dialog was exchanged
with a Qt Window during the development of this plugin so that a tool bar with a help icon could be
added to the window containing the attribute table. The Qt Window allows for further development of
the plugin.

The plugin window is instantiated by the geomAttribute_window module:

class geomAttributeWindow(QtWidgets.QMainWindow, FORM_CLASS):
def __init__(self, parent=None):

"""
Constructor
"""
super(geomAttributeWindow, self).__init__(parent)
Set up the user interface that is constructed with Qt Designer.
self.setupUi(self)

The plugin window design is in Qt’s designer file format (file extension .ui). With this approach, the
window design can be changed independently from the plugin’s Python script using Qt Designer. To
function, the “Table View” widget in Qt Designer had to be subclassed with the QgsAttributeTableView.

As Qt’s item delegate is used to replace strings in the produced attribute table with icons, all of the
filenames for the icons had to be added to the Qt resource collection file (resources.qrc). The
resources used by Qt have to be compiled whenever changes are made to the resource collection file.

The instantiation of the Geometry virtual field is coupled to the plugin’s window instantiation, such that
this field is deleted when the plugin’s window is closed.

6.5 Plugin Help Files

The initial intention was to contain all of the plugin’s help files within the plugin so that they can be
accessed offline. However, the construction of help files using the Qt framework was cumbersome. It
was more efficient to produce HTML help files using Sphinx15 and have these hosted by the plugin’s
GitHub site. An inspection of the help files for QGIS16 and the help files of many QGIS plugins revealed
that most QGIS plugin help files are hosted on the world wide web and require an internet connection
to access. Ironically, Sphinx can also produce Qt Help formatted files, and, this may be exploited in the
future to generate offline help files.

6.6 Future Development

There is much scope to enhance the plugin. Some priorities for improvement are:

1. add a summary table that reviews large datasets for null or empty geometry values;
15 http://www.sphinx-doc.org/en/master/
16 https://docs.qgis.org/testing/en/docs/user_manual/index.html

6.4. Plugin Window 33

http://www.sphinx-doc.org/en/master/
https://docs.qgis.org/testing/en/docs/user_manual/index.html

GeomAttribute
A QGIS Attribute Table with a Geometry Column

2. add another virtual field that displays the number of parts for multipart geometries;

3. add icons for geometries with curved segments; and,

4. add support for geometries with measurements or elevation.

34 Chapter 6. Plugin Design

CHAPTER

SEVEN

TOOLS INCLUDED WITH THIS PLUGIN

A QGIS 3.x plugin that shows an Attribute Table with a geometry describing column for the active vector
layer.

This plugin has the following tools:

7.1 Geometry Attribute Table

An attribute table window which includes a geometry describing column for any vector layer.

The geometry column uses the icons shown in Table 7.1 to indicate a feature’s geometry value or type in
descending precedence: unknown (null); empty; point; multi-part point; line; multi-part line; polygon;
and, multi-part polygon.

Table 7.1: Icons used to represent various geometries.
Icon Geometry Description Precedence

Unknown value First

Empty value Second

Point type Third

Multi-Part Point type Fourth

Line type Fifth

Multi-Part Line type Sixth

Polygon type Seventh

Multi-Part Polygon type Eighth

The plugin does not distinguish between two dimensional and three dimensional shapes, nor between
those with or without measurements. The plugin does not consider whether geographic or cartesian
coordinates are used for the spatial reference system.

7.1.1 Use

This tool works on the current active layer within QGIS. The current layer needs to be a vector layer.
This tool will not work on a raster layer.

Within QGIS, click on the vector layer to be analysed in the Layers Panel to make it active, then click
on the Geometry Attribute Table icon or select the Geometry Attribute Table item from the Geometry

35

GeomAttribute
A QGIS Attribute Table with a Geometry Column

Attribute Table group on the Plugins menu. Successful use of the Geometry Attribute Table tool will
display a new window with the title “Geometry-Attribute Table” that contains an attribute table where
the last column has the heading “Geometry”. Fig. 7.1 shows an example of an open Geometry Attribute
Table output window with a “Geometry” column heading. This geometry describing column uses the
icons shown in Table 7.1 to represent each record’s geometry.

Fig. 7.1: A screen shot of the window containing an attribute table produced by the Geometry Attribute
Table tool in a Microsoft Windows environment.

A text version of the Geometry column will also be appended to the conventional QGIS attribute table
(Fig. 7.2). Successful closing of the Geometry Attribute Table window will also remove this appended
Geometry column.

Fig. 7.2: A screen shot of the standard QGIS Attribute Table window showing the same dataset shown
in Fig. 7.1 in a Microsoft Windows environment. The column with the heading “Geometry” is a virtual
field created by the Geometry Attribute Table tool and will be removed when the Geometry-Attribute
Table window is closed.

7.2 Load Data

The Load Data function creates the following QGS memory vector layers and adds them to the current
QGIS work space:

• Multi-part Lines

36 Chapter 7. Tools Included With This Plugin

GeomAttribute
A QGIS Attribute Table with a Geometry Column

• Multi-part Points

Both of these layers contain records with: primitive geometries; multi-part geometries; empty geometry
values; and, null geometry values. These layers are ideal to observe the utility of the Geometry Attribute
Table tool.

The methods that create these layers are contained within the plugin’s modelVectorLayers module.

7.2.1 Use

Select the Load Model Data item from the Geometry Attribute Table group on the QGIS Plugins menu.

7.2. Load Data 37

GeomAttribute
A QGIS Attribute Table with a Geometry Column

38 Chapter 7. Tools Included With This Plugin

CHAPTER

EIGHT

API

The following modules are included within this Plugin. The Plugin’s repository is on GitHub17.

8.1 modelVectorLayers module

Creates vector layers with a QGIS memory layer data source. These layers are intended to demonstrate
how the Geometry Attribute Table plugin renders datasets that have: multi-part, single part, empty, and,
null geometries. A description of the created layer is included with each method.

modelVectorLayers.createMultiLines(layerName=’Multi-Part Lines’)
A geometry collection of multi-part lines and lines (single part constrained).

Args: layerName (str): The name of the layer that is loaded into QGIS.

Returns: A memory vector layer containing features with the following geometries: 2 part multi-
line; 3 part multi-line, 1 part multi-line, line, Empty multi-line, and, Null.

modelVectorLayers.createMultiPoints(layerName=’Multi-Part Points’)
A geometry collection of multi-part points and points (single part constrained).

For an empty point, QGIS creates erroneously creates a point with the coordinates (0 0).

Args: layerName (str): The name of the layer that is loaded into QGIS.

Returns: A QGIS memory data source vector layer containing features with the following ge-
ometries: 2 point multi-point; 4 point multi-point, 1 point multi-point, point, empty multi-
point, and, null.

8.2 parseQGISGeometry module

The parseQGISGeometry module includes a QGIS expression called geometryField that returns a string
that represents a vector feature’s geometry. The geometryField QGIS expression is described in detail
in the section Geometry Describing Expression.

The QGIS Expression and methods in this module parse each record’s vector geometry for a QGIS
vector layer.

parseQGISGeometry.layerAddVirtualGeometryField(vectorLayer)
Appends a virtual field called “Geometry” to the input vectorLayer. This virtual field consists of
string values populated by the “geometryField” expression that is contained within this module.

Args: vectorLayer (QgsVectorLayer): A QGIS vector layer.
17 https://github.com/PhilipWhitten/geomAttribute

39

https://github.com/PhilipWhitten/geomAttribute

GeomAttribute
A QGIS Attribute Table with a Geometry Column

parseQGISGeometry.layerRemoveVirtualGeometryField(vectorLayer)
Removes the virtual field called ‘Geometry’ from a vector layer if it exists.

Args: vectorLayer (QgsVectorLayer): A QGIS vector layer.

parseQGISGeometry.layer_review(layer)
IN DEVELOPMENT - NOT CURRENTLY USED BY PLUGIN

Reviews any vector layer for the presence of Null or Empty geometries. Provides a summary of
the vector geometry types that occur within a layer.

Args: vectorLayer (QgsVectorLayer): A QGIS vector layer.

8.3 zipGeomAttribute module

Contains methods for zipping the minimum compiled source scripts needed for this plugin to function
within QGIS. These methods do not do any of the compilation (e.g. update documentation, or, compile
the QT Designer interface).

zipGeomAttribute.installGeomAttributeFromZip(pluginPath)
Unzips the zipped plugin folder. An automation used for testing.

Args: pluginPath (str): The path of the plugin folder in the user’s installation of QGIS.

zipGeomAttribute.zipGeomAttribute()
Zips the minimum number of files needed for the plugin to be installed into QGIS

40 Chapter 8. API

CHAPTER

NINE

CHANGELOG

This project adheres to Semantic Versioning18.

9.1 Version 0.1.0

• First release

• Shows attribute table for vector layers in QGIS v3.x with icons that represent the geometry of
each record.

• Has the option to create demonstration vector datasets.

9.2 Version 0.1.1

• Removes the virtual field called “Geometry” when the created “Geometry-Attribute Table” is
closed.

18 https://semver.org/spec/v2.0.0.html

41

https://semver.org/spec/v2.0.0.html

GeomAttribute
A QGIS Attribute Table with a Geometry Column

42 Chapter 9. Changelog

BIBLIOGRAPHY

[1] Empty(self, *args). URL: http://gdal.org/python/osgeo.ogr.Geometry-class.html#Empty.

[2] How To : Insert a NULL or empty st _ geometry attribute in Oracle. URL: https://support.esri.com/
en/technical-article/000010466.

[3] QGIS - The Leading Open Source Desktop GIS. URL: https://www.qgis.org/en/site/about/index.
html#.

[4] def Intersection(self, *args):. URL: http://gdal.org/python/osgeo.ogr-pysrc.html#Geometry.
Intersection.

[5] ISO 19125-2 Geographic information - Simple feature access. Part 2: SQL Option. First Edition.
2004.

[6] What Is Null. 2010. URL: http://wiki.c2.com/?WhatIsNull.

[7] Spatial Data Types Overview | Microsoft Docs. 2016. URL: https://docs.microsoft.com/en-us/sql/
relational-databases/spatial/spatial-data-types-overview?view=sql-server-2017.

[8] Bug report #19190: QgsPoint class does not store empty point geometries - QGIS Application -
QGIS Issue Tracking. 2018. URL: https://issues.qgis.org/issues/19190.

[9] Changelog for QGIS 3.0. 2018. URL: https://www.qgis.org/en/site/forusers/visualchangelog30/.

[10] INTERSECT | meaning in the Cambridge English Dictionary. 2018. URL: https://dictionary.
cambridge.org/dictionary/english/intersect.

[11] Model/View Programming | Qt Widgets 5.12. 2018. URL: http://doc.qt.io/qt-5/
model-view-programming.html.

[12] QGIS API Documentation: QgsAbstractGeometry Class Reference. 2018. URL: https://qgis.org/
api/classQgsAbstractGeometry.html.

[13] QGIS API Documentation: Source File. 2018. URL: https://qgis.org/api/qgsgeometry_8cpp_
source.html.

[14] QGIS/src/providers/. 2018. URL: https://github.com/qgis/QGIS/tree/master/src/providers.

[15] Tutorial: Perform web editing using data from a database—Documentation | Ar-
cGIS Enterprise. 2018. URL: http://enterprise.arcgis.com/en/server/latest/get-started/windows/
tutorial-performing-web-editing-using-data-from-a-database.htm.

[16] Wikipeday Contributors. QGIS. URL: https://en.wikipedia.org/wiki/QGIS.

[17] Wikipedia Contributors. Set (mathematics). 2018. URL: https://en.wikipedia.org/w/index.php?
title=Set_(mathematics)&oldid=866126059.

43

http://gdal.org/python/osgeo.ogr.Geometry-class.html#Empty
https://support.esri.com/en/technical-article/000010466
https://support.esri.com/en/technical-article/000010466
https://www.qgis.org/en/site/about/index.html#
https://www.qgis.org/en/site/about/index.html#
http://gdal.org/python/osgeo.ogr-pysrc.html#Geometry.Intersection
http://gdal.org/python/osgeo.ogr-pysrc.html#Geometry.Intersection
http://wiki.c2.com/?WhatIsNull
https://docs.microsoft.com/en-us/sql/relational-databases/spatial/spatial-data-types-overview?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/spatial/spatial-data-types-overview?view=sql-server-2017
https://issues.qgis.org/issues/19190
https://www.qgis.org/en/site/forusers/visualchangelog30/
https://dictionary.cambridge.org/dictionary/english/intersect
https://dictionary.cambridge.org/dictionary/english/intersect
http://doc.qt.io/qt-5/model-view-programming.html
http://doc.qt.io/qt-5/model-view-programming.html
https://qgis.org/api/classQgsAbstractGeometry.html
https://qgis.org/api/classQgsAbstractGeometry.html
https://qgis.org/api/qgsgeometry_8cpp_source.html
https://qgis.org/api/qgsgeometry_8cpp_source.html
https://github.com/qgis/QGIS/tree/master/src/providers
http://enterprise.arcgis.com/en/server/latest/get-started/windows/tutorial-performing-web-editing-using-data-from-a-database.htm
http://enterprise.arcgis.com/en/server/latest/get-started/windows/tutorial-performing-web-editing-using-data-from-a-database.htm
https://en.wikipedia.org/wiki/QGIS
https://en.wikipedia.org/w/index.php?title=Set_(mathematics)&oldid=866126059
https://en.wikipedia.org/w/index.php?title=Set_(mathematics)&oldid=866126059

GeomAttribute
A QGIS Attribute Table with a Geometry Column

[18] ESRI. ESRI Shapefile Technical Description. Technical Report, ESRI, 1998. URL: www.esri.com,.

[19] Tomasz Imieliński and Witold Lipski Jr. Incomplete Information in Relational Databases. J. ACM,
31(4):761–791, sep 1984. URL: http://doi.acm.org/10.1145/1634.1886, doi:10.1145/1634.188619.

[20] Mateusz Loskot. SqlGeometry and POINT EMPTY in WKB. 2010. URL: http://mateusz.loskot.
net/post/2010/02/26/sqlgeometry-and-point-empty-in-wkb/.

[21] OGC. OpenGIS\textregistered Implementation Standard for Geographic information - Simple fea-
ture access - Part 1: Common architecture. Open Geospatial Consortium, Inc, pages 93, 2010.
URL: http://portal.opengeospatial.org/files/?artifact_id=25355E+Implementation+Standard+for+
Geographic+information+-+Simple+feature+access#1.

[22] Paul Ramsey. Nothing, Nada, Zip, Bupkus. 2010. URL: http://blog.cleverelephant.ca/2010/03/
nothing-nada-zip-bupkus.html.

[23] Anthony Robinson. Representing the Presence of Absence in Cartography. Annals of the American
Association of Geographers, pages 1–15, feb 2018. URL: https://www.tandfonline.com/doi/full/
10.1080/24694452.2018.1473754, doi:10.1080/24694452.2018.147375420.

[24] Even Rouault. Empty elements in GML : empty or NULL. 2015. URL: https://trac.osgeo.org/gdal/
ticket/5968.

[25] Ron van der Meyden. Logical Approaches to Incomplete Information: A Survey. In Jan Chomicki
and Gunter Saake, editors, Logics for Databases and Information Systems, chapter Logical Ap,
pages 307–356. Kluwer Academic Publishers, Norwell, MA, USA, 1998. URL: http://dl.acm.org/
citation.cfm?id=294135.294145.

[26] Gary Sherman. Plugin Builder Tool. URL: http://g-sherman.github.io/plugin_build_tool/.

[27] Gary Sherman. History of QGIS Committers. 2011. URL: http://spatialgalaxy.net/2011/09/23/
history-of-qgis-committers/.

[28] Philip Whitten. Bug report #19397: Parssing of empty geometry values from MicroSoft SQL
Server - QGIS Application - QGIS Issue Tracking. 2018. URL: https://issues.qgis.org/issues/
19397.

19 https://doi.org/10.1145/1634.1886
20 https://doi.org/10.1080/24694452.2018.1473754

44 Bibliography

www.esri.com,
http://doi.acm.org/10.1145/1634.1886
https://doi.org/10.1145/1634.1886
http://mateusz.loskot.net/post/2010/02/26/sqlgeometry-and-point-empty-in-wkb/
http://mateusz.loskot.net/post/2010/02/26/sqlgeometry-and-point-empty-in-wkb/
http://portal.opengeospatial.org/files/?artifact_id=25355E+Implementation+Standard+for+Geographic+information+-+Simple+feature+access#1
http://portal.opengeospatial.org/files/?artifact_id=25355E+Implementation+Standard+for+Geographic+information+-+Simple+feature+access#1
http://blog.cleverelephant.ca/2010/03/nothing-nada-zip-bupkus.html
http://blog.cleverelephant.ca/2010/03/nothing-nada-zip-bupkus.html
https://www.tandfonline.com/doi/full/10.1080/24694452.2018.1473754
https://www.tandfonline.com/doi/full/10.1080/24694452.2018.1473754
https://doi.org/10.1080/24694452.2018.1473754
https://trac.osgeo.org/gdal/ticket/5968
https://trac.osgeo.org/gdal/ticket/5968
http://dl.acm.org/citation.cfm?id=294135.294145
http://dl.acm.org/citation.cfm?id=294135.294145
http://g-sherman.github.io/plugin_build_tool/
http://spatialgalaxy.net/2011/09/23/history-of-qgis-committers/
http://spatialgalaxy.net/2011/09/23/history-of-qgis-committers/
https://issues.qgis.org/issues/19397
https://issues.qgis.org/issues/19397

	Preface
	Introduction
	Background
	Relational Datasets
	Geospatial Dataset

	Geometry Data Types
	Geometry Data Values
	Empty
	null

	QGIS
	QGIS Data Providers

	GIS Professional Awareness
	Exposing null or Empty Geometry Values in QGIS

	QGIS Data Provider Data Parsing Problems
	Parsing Geometry Data Types
	Data Provider Geometry Type Errors

	Parsing Empty and null Geometry Data Values
	Instantiation of Empty Geometry Values by QGIS
	Changing of Empty data Values by parsing
	Inadvertently Creating Empty Geometries within QGIS
	Instantiation of null Geometry Values by QGIS
	Retrospective Incorporation of Empty and null Values Into GDAL

	Aim
	Plugin Design
	Geometry Describing Expression
	Attribute Table Creation
	Putting Icons into the Attribute Table
	Plugin Window
	Plugin Help Files
	Future Development

	Tools Included With This Plugin
	Geometry Attribute Table
	Use

	Load Data
	Use

	API
	modelVectorLayers module
	parseQGISGeometry module
	zipGeomAttribute module

	Changelog
	Version 0.1.0
	Version 0.1.1

	Bibliography

