A Comparative Assessment of Tree Crown Detection and Segmentation Methods using OBIA Data Fusion, Convolutional Neural Networks, and Point Cloud Clustering

Capstone Project Proposal by Glenn Xavier

Adviser: Douglas Miller, Ph.D.

About Me

- Environmental GIS Analyst
- Center for Environmental Management of Military Lands (CSU-CEMML)
- Air Force Civil Engineer Center (AFCEC), Midwest Region
- Scott AFB, Illinois

Presentation Overview

Background

Potential Solutions

Project Goals and Objectives

Study Areas

Data Sources

Workflow and Methodology

Expected Results

Project Timeline

Questions and Comments

U.S. AIR FORCE Fairchild Air Force Base

Home of the 92d & 141st Air Refueling Wings

Background

- Federal law mandates natural resource management
- USAF Installations are small self-contained cities
- Bases contain a mix of urban/ suburban, and natural land cover
- Protect ESA and natural habitat
- Urban beautification
- Tree management relies on field-based measurements
 - Labor intensive
 - Sampling is sporadic

Background

- Remote Sensing data can supplement surveys
 - Lidar > 4 ppsm can extract individual tree metrics
 - Tree height, crown width, basal area, crown base height, crown volume
- USAF/AFCEC collects high resolution imagery and lidar
 - Lidar point clouds are minimally processed
 - Little institutional knowledge on how to extract features
 - Data mostly goes unused

Project Goals and Objectives

Potential Solutions

- Object-Based Feature Extraction to isolate tree canopy
 - Allows for fusion of imagery, lidar, and reference vector data
 - Rule-based, stepwise instructions
 - Can be general or fine-tuned
- Delineate Individual Tree Crown
 - Method 1: Watershed segmentation easy but generalized
 - Method 2: Point cloud clustering more difficult to implement
 - Method 3: Object detection with Convolutional Neural Network time consuming to train model

Study Areas

- Installations with high-resolution imagery and high density lidar
- Wide range of tree species and mixed land-use cover
- Availability of reference and validation data
- Additional bases available for validation

Data Sources

	Scott	McConnell	Whiteman	Langley	Fairchild
State	Illinois	Kansas	Missouri	Virginia	Washington
Date	3/29/2020	12/5/2018	4/20/2019	4/17/2020	5/27/2018
Imagery RGB,NIR	7.62 cm	6 cm	7.5 cm	7.5 cm	7.62 cm
Nominal Pulse Density (pulse/m²)	8 ppsm	8 ppsm	8 ppsm	20 ppsm	8 ppsm
Returns	7	5	7	7	5
Typical Tree Point Density (all returns, points/m²)	20-40	10-20	20-40	40-80	10-20
Urban Trees	Mostly ash and maple	Pear, oak, magnolia, well dressed and isolated	Very sparse oak	Bald cypress, London planes, hollies, elms, willow oaks	Mostly Conifer
Unmanaged Trees	Very dense wetland, Maple,Ash	Small Stands of Cedar	Dense Mixed oak dry forest, hickory, maple, cedar	Oak and loblolly	Mostly Conifer, Ponderosa Pine

Object-Based Image Analysis (OBIA)

Object-Based Image Analysis (OBIA)

- Allows for fused data
- Shape and texture
- Easy to implement
- Flexible
- Can add segmentation algorithms to ruleset
- Needs eCognition
- Initial segmentation is computationally expensive

Watershed

Watershed

- Very easy to implement
- Efficient
- Works as benchmark algorithm
- Can be used for extra CNN training samples

Whiteman AFB

Point Cloud Clustering

- More complex to implement
- Uses all lidar data
- Can be highly accurate
- Reliant on # of returns, density
- Must deal with outliers and clutter

McConnell AFB

Convolutional neural network (CNN)

Detected Trees from RGB image w/ DeepForest (Weinstein et al., 2020)

15 453

Segmented Trees from NDVI + Pan w/ U-Net (Brandt et al., 2020)

Accuracy Assessment

$$IoU(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

Recall
$$(A, B) = \frac{A}{|A \cap B|}$$
 Precision $(A, B) = \frac{B}{|A \cap B|}$

$$F_1Score = 2 \frac{Precision \times Recall}{Precision + Recall}$$

Expected Results

- Accuracy will vary depending on:
 - Species
 - Forest density
 - Distribution of interlocking crown
 - Presence of understory
 - Quality of source data
 - Segmentation method
- Ideal urban tree canopy likely >85% mean accuracy
- Un-managed forest stands anywhere from 50-70%

Questions and Comments