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Introduction  

Natural disasters are a formidable global problem. The UN estimates that since 1970, these disasters 

have killed more than 1.5 million persons, affected 7 billion persons, and caused economic losses 

totaling $1.68 trillion dollars (UNESCAP, 2015).  

 

Disaster stakeholders around the world work hard to prepare for, mitigate against, and cope in the 

aftermath of these events. They need support tools that are flexible enough to work on a broad array of 

disaster types, as well as capable of monitoring change through time. A relatively new approach, called 

object based image analysis (OBIA) may be of help. 

 

The goal of this project was to evaluate OBIA as a tool to support disaster stakeholders. A case study 

testing this approach was conducted across Bolivar Peninsula, Texas with a focus on the 2008 Hurricane 

Ike disaster event. OBIA software was used to classify six object types (buildings, water, roads, and three 

kinds of vegetation) for three separate time periods – before and after the storm to document damage, 

and a later period to document recovery.  

 

Object based image analysis 

Object-based image analysis is a semi-automated method to classify objects from high resolution, 

remotely sensed data. OBIA software fuses the disparate data sets, segments fused data into objects 

and then classifies objects based on a wide assortment of object properties.  An example OBIA 

classification is shown in Figure 1. 

 

 
Figure 1: The image shows the OBIA classification of the six object types indicated in the legend. 

Classified objects are overlaid on a high resolution aerial image. 

 

Figure 2 displays an example rule set. Each line in the rule set represents one or more algorithms, which 

make use of parameter settings specified by the analyst. Algorithms may guide the computer to 

generate new data values using mathematical formulae, segment data prior to classification, classify 

objects of interest, and/or save and export the results in vector or raster format. The process is semi-

automated because an OBIA analyst first develops the rule set that guides the computer, then the rule 

set is applied by the computer in a more automated fashion to the data.  
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Figure 2: Example rule set showing the sequence of rules used to segment and classify objects. 

 

OBIA advantages 

The object-based approach offers several important advantages over pixel-based approaches. First, OBIA 

exploits a range of characteristics to classify objects, not just spectral properties as pixel-based 

approaches do, but also the object’s shape, size, texture, and context (Hay and Castilla, 2008).  

Consequently, OBIA is closer to the way in which humans make classification decisions (Blaschke et al, 

2014). 

 

Another advantage is that extracted objects are more intuitively meaningful than classes generated by 

pixel-based approaches (Blaschke et al., 2014), and are easier to confirm visually. Almost everyone can 

compare a classified building object to buildings in the imagery; and they will quickly grasp the 

implications if buildings are no longer present after a disaster event. This is a huge advantage for 

disaster applications, since it is critical that decision-makers clearly understand the quality and meaning 

of products generated for their use.  

 

In addition, OBIA incorporates expert knowledge. The extraction relies on a rule set developed by the 

analyst and analysts are free to choose whatever objects are most germane to their project as long as 

the size of the object is appropriate to the resolution of the data. Further, analysts determine which 

object properties and parameter settings are most suitable to perform the classification. This flexibility 

permits analyses tailored to specific disaster events and particular stakeholder needs.  

 

OBIA also offers potential advantages relative to human interpreters. Once the rule set is built, OBIA can 

be faster and more consistent than manual interpretation, especially for larger areas, as the rule set may 

be reused. Note however, that reuse requires a similar suite of data and a similar setting.  

 

OBIA limitations 

OBIA offers many advantages, but the approach does have limitations. Analysts should select target 

objects that are distinct from other phenomena, e.g.  individual features such as a lakes or groupings of 
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individual features like a forest (Bian, 2007). A continuous phenomenon or features on a continuum 

make poor or more problematic objects. It is possible to extract an object based on an arbitrary cutoff 

value, such as an elevation ≥ 5000 feet in topographic data. However, this would not represent a distinct 

object in the real-world, and thus could foster confusion among later users (Bian, 2007). In the disaster 

field, clarity is critical. 

 

Other potential limitations are the availability of high resolution data and trained analysts. Since 

classified objects represent distinct features, OBIA works best with high resolution data. Moderate to 

coarse resolution data provide values averaged across a range of phenomena which limits their potential 

use in OBIA (Blaschke, 2010). In addition, advanced training is required for personnel to develop the rule 

set, including knowledge of the OBIA software and remotely sensed data.  

 

Case Study: Bolivar Peninsula and Hurricane Ike - Setting and study questions 

To investigate the usefulness of OBIA for disaster applications, a case study focusing on the Hurricane 

Ike event and Bolivar Peninsula, Texas was performed. Hurricane Ike made landfall on the western end 

of Bolivar in September, 2008 (see red hurricane track in Figure 3). Bolivar Peninsula (yellow outline) is a 

narrow spit of land located on the Texas Gulf Coast, southeast of the city of Houston.  

 

 
Figure 3: Map showing Bolivar Peninsula, Texas (yellow outline), as well as the track of Hurricane 

Ike (red line). The inset map highlights the study area (yellow star) on the U.S. Texas Gulf Coast. 

 

Ike devastated Bolivar. In addition to hurricane force winds, the peninsula was inundated by storm 

surge, with water depths reaching at least 15’ across parts of Bolivar (NOAA, n.d.).  Before and after 

photos from the USGS illustrate some of the damage (Figure 4). FEMA (2009) reported that 

approximately 65% of the buildings on Bolivar were destroyed. In addition, roads were covered with 

sand and storm debris, a bridge was partly collapsed and the coastline and coastal dune system was 

badly eroded. Bolivar was chosen for the case study because it was hard-hit by Hurricane Ike and high 

resolution data for multiple time periods were publically available from state or national repositories. 

The perspective from the ground is shown in Figure 5. 
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Figure 4: Photos illustrating conditions on Bolivar Peninsula shortly before and after Hurricane 

Ike. Arrows highlight identical buildings in both photos. (Image credit: USGS) 

 

 
Figure 5: Ground level view of Hurricane Ike damage on Bolivar. Note the storm debris, stripped vegetation, 

water-filled scour holes, and remnant building pilings. (Image credit: Jocelyn Augustino, FEMA) 

 

Three study questions were of primary interest. 

1. Can OBIA accurately classify the types of objects likely to be of interest to disaster stakeholders? 

Stakeholders were envisioned as local, state and federal government officials, insurance 

companies, engineering and construction firms, conservation organizations, and researchers 

interested in social vulnerability or social justice questions. Based on these stakeholder types, six 

test objects were chosen: buildings, roads, water and three vegetation classes. These objects 

were classified across Bolivar for three different time periods - before the storm, approximately 

six months after the storm, and roughly a year and a half after the storm. 

2. Can rule sets be reused, either for the same data set in adjacent areas, or for different data sets 

acquired at different time periods? To save time, disaster analysts may wish to re-use a rule set 

in order to expand an area of interest or evaluate new data sets as they become available. 

Analysts may need to update preparedness plans, respond in the aftermath of a disaster event, 

or report on the state of recovery. Consequently, geographic reuse was tested, as well as reuse 

on data from different time periods. 

3. Can OBIA clearly document change through time? Evidence of changing conditions is crucial to 

disaster stakeholders as they work to understand the immediate and long-term disaster effects 

on communities (Cutter et al., 2014), and on the natural environment.  In addition, disaster 

events themselves may unfold gradually over years or even decades, such as extreme drought or 

rising sea level. Recognizing and mitigating such changes can reduce costs and save lives. To 

investigate this question, OBIA output for each of the three time periods was compared. 
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Data 

Data included Lidar point clouds, high resolution aerial imagery, and vector data. Appendix 1 shows a 

summarized metadata table. 

 

Lidar point clouds: Portions of two point clouds were downloaded from NOAA’s Digital Coast 

website: 1) 2006 Texas Water Development Board (TWDB) Lidar: Galveston County and 2) 2009 U.S. 

Army Corps of Engineers (USACE) Topobathy Lidar: Post Hurricanes Gustav and Ike. Both were 

discrete return lidar acquired using fixed wing aircraft. They were selected because they offered 

complete or near-complete coverage across Bolivar, provided a before and after perspective, and 

were free to the public.  

 

High Resolution Imagery: Three high resolution image tile sets, acquired by fixed wing aircraft, were 

downloaded from the Texas Natural Resources Information System (TNRIS). These included Texas 

Orthophoto Program (TOP) natural color and color infrared image sets from 2008 and 2009, and 

2010 4-band imagery from the National Agriculture Imagery Program (NAIP). TOP imagery had a 

spatial resolution of 0.5 m, while NAIP imagery had a spatial resolution of 1 m. These data were 

selected because they were high resolution, included near infrared (NIR) as well as red (R), green (G) 

and blue (B) bands, and they were freely available from the appropriate time periods.  

 

Vector data: Census road vectors were downloaded that would have been available to an analyst 

pre-storm 2008 and post-storm 2009 and 2010. Based on data release dates, these were roads from 

2007, 2008, and 2009, but as it turned out, Census roads across Bolivar Peninsula were identical in all 

three vector sets. Other vectors used in the study were the USGS “Best Resolution” National 

Hydrography Dataset (NHD) and manually digitized area of interest (AOI) outlines.  

 

Figure 6 is a generalized timeline for the three time periods. Hurricane Ike is indicated by the dashed red 

line. In the pre-storm suite, Lidar was 20-24 months older than the imagery. As for post storm periods, 

the same 2009 lidar was used and was simply paired with different sets of imagery. For Post-storm 1, 

imagery was 1-3 months older than the lidar. For Post-storm 2, Lidar was 12-14 months older than the 

imagery. Since Census road vectors were identical, the same data (Census roads 2008) was used for all 

three time periods, which meant that road vectors became increasingly out-of-date over time. 

 
Figure 6: Primary data sets used in the capstone project. 



6 

 

Methods and Results 

A simplified project workflow is provided in Figure 7 highlighting three project stages– data 

preprocessing, object based image analysis, and merging of OBIA output and review. Three technical 

software packages were utilized including 1) QCoherent LP360 Advanced (LP360 for ArcGIS version), 2) 

ESRI ArcGIS for Desktop 10.3, and 3) Trimble eCognition Developer 9.1.3. Summary descriptions of 

methods and results follow. 

 

 
Figure 7: Simplified project workflow. 

 

Data Preprocessing 

Lidar:  Downloaded lidar LAS files for both time periods were carefully reviewed at small and large 

(1:5000 or larger) scales; and the pre-existing point classes were edited as needed in LP360 software. 

Gross coverage for the 2006 lidar appeared complete, but two sizeable data voids were evident in the 

2009 lidar. Notice the two narrow white rectangles in the center of Bolivar (Figure 8).  

 

 
Figure 8: Lidar points colored by classification (unclassified=gray; ground=orange; water=blue; vegetation=green; 

buildings=red). Data from 2006 and 2009 are shown on the left and right, respectively, along with tile outlines. 
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Data voids appeared to be flightline gaps, but their specific cause was unknown. The vast majority of the 

terrain within these voids was low-lying marshland with areas of water, although a few isolated 

roadways, buildings, and a portion of a sand excavation/quarry were also observed. Derivative digital 

elevation models interpolated through these data gaps. No noteworthy large-scale (small) data voids 

were observed other than those positioned over water, or water likely at high tide. These were 

anticipated given the physical properties of the laser light (Pack, 2012).  

 

The overall ground classification for 2006 appeared good, and TIN displays of the ground surface 

confirmed this assessment. However, several manual reclassifications were required including 1) 

reclassification of a few misclassified blocks of ground points to Class 1 - Unclassified; 2) reclassification 

of North Jetty ground points to Class 1 - Unclassified; 3) reclassification of high noise points to Class 18 - 

High noise.  

 

Similarly for 2009, the overall ground classification was done well, again confirmed with the ground TIN.  

Some vegetation points more properly belong to the buildings class, e.g. scattered points on roofs. But 

since only ground and first returns were required for digital elevation surface models, edits were 

confined simply to reclassification of high noise points to Class 18 - High noise.  

 

Once LAS files were edited, three derivative elevation products for each time period were generated in 

ArcGIS, specifically bare earth digital elevation models (DEMs) using ground points, digital surface 

models (DSMs) using first-return points, and normalized digital surface models (nDSMs) produced 

through subtraction of the DEMs from the DSMs. Associated hillshades were also created.  

 

Elevation values for DEMs and DSMs were relative to the NAVD 88 vertical datum and units for all 

elevation models were in feet. Digital elevation models were projected to NAD 83 UTM Zone 15N and 

clipped to the AOI. Only the nDSMs were used in OBIA assessments.  

 

Imagery:  Imagery was reviewed and pre-processed in ArcGIS software. Image quality for the 2008 and 

2009 TOP imagery appeared good, however spectral variation between tiles for the 2010 NAIP imagery 

was pronounced. This was particularly noticeable over water. No spectral corrections were applied over 

concern that stretched values might impact later OBIA analyses. In addition, the accuracy of the NAIP 

data was lower than the TOP data, so much so that TNRIS recommended that the NAIP imagery be used 

only for base maps. 

 

Since image data was already in the proper projection, no re-projection was needed. However, as all sets 

were downloaded as tiles, image mosaics across Bolivar Peninsula were created. Separate natural color 

and color infrared mosaics were generated for the TOP 2008 and 2009 image sets, while only one 

mosaic was produced for the 4-band NAIP 2010 imagery. These mosaics were subsequently clipped to 

the AOI outline.  

 

Vector data:  The final AOI outline over Bolivar Peninsula was manually digitized in ArcGIS, and included 

only the areas having full data coverage. Note: Exceptions were the two large voids in the 2009 lidar 

discussed previously. A small portion of land visible in the imagery was not included in the AOI (see 

arrow in Figure 9) because it was absent from the 2006 lidar data set. In addition, most of the North 

Jetty, extending off the SE tip of Bolivar, was excluded because it was not pertinent to the study. The 

final AOI was approximately 49 sq. miles (127 sq. km) in area. 
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Figure 9: Final outline of project AOI. The arrow highlights the portion of Bolivar that was not included 

because one lidar set did not cover that region. Also, most of the North Jetty was also excluded. 

 

Road vectors over Bolivar were selected from the Census road vector set for Galveston County, based on 

their location. These were later projected to NAD83 UTM zone 15N and clipped to the AOI in ArcGIS. 

 
2008 OBIA evaluation (pre-storm) 

OBIA classifications were generated for each time period in eCognition software using rule sets alone. 

No manual editing, which is possible in eCognition, was performed. Each period presented a unique set 

of challenges. A major challenge during the 2008 assessment was learning which OBIA algorithms 

worked most effectively for each object type. To test various algorithms during rule set development, 

several small area subsets were created for distinctive locales across Bolivar, for example marshland, 

shoreline, commercial areas, or various residential settings such as wooded neighborhoods, beach-front 

communities or marina developments. Creation of the rule set was a highly iterative process involving 

much trial and error. The interim rule set was applied repeatedly to these small subsets to evaluate the 

efficacy of individual rules as they were considered.  

 

Once the rule set was complete, it was applied in sequence to 18 larger overlapping subsets that 

covered all of Bolivar Peninsula. Object shapefiles from each of the 18 subsets were exported and later 

merged into composited shapefiles in ArcGIS. The same process was followed for the post storm time 

periods as well. It should be noted that the final rule set for 2008 was initially applied to entire AOI. After 

three days of processing with no end in sight, the job was killed. Apparently this was too large an area 

for the available computing resources, which was why the area was subdivided into 18 regions. Final 

composited OBIA objects for the pre-storm 2008 assessment is shown in Figure 10, while larger scale 

views of the 2008 OBIA classification are provided in Appendix 2.  
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Figure 10: Pre-storm (2008) OBIA classified objects on natural color imagery. 

 

2008 thematic accuracy 

Due to time constraints, detailed accuracy assessments were only conducted on the 2008 OBIA 

classification. This evaluation was performed across a 4.2 sq. mile region in the center of Bolivar 

Peninsula. Figure 11 shows the location of the assessment AOI (red box) along with a more detailed view 

of the area. This AOI was chosen because it contained an assortment of settings and features, including 

marshland, a variety of housing and commercial developments, local roads and a state highway, and a 

range of vegetation and water body types.  

 
Figure 11: Location maps showing the AOI selected for thematic accuracy assessments. 
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Water: Water objects from 2008 were visually assessed relative to the 2008 imagery and later 

compared to the 2016 “best resolution” National Hydrography Dataset (at right in yellow) (Figure 

12). Along the margin of the Gulf Intracoastal Waterway (red arrow), the NHD was more accurate 

than the OBIA water object. The OBIA object incorporated some of the sandy (wet?) margins of the 

waterway, which the NHD did not. However, when the two sets were compared relative to inland 

water bodies, the OBIA object set was both more comprehensive and more detailed. Notice that 

the NHD water bodies were simpler in shape and simply ignored “islands” found within them. 

Island-like features were properly excluded by the OBIA water objects. In the marshland setting, 

the detail captured by the OBIA water classification was remarkable. 

 

 
Figure 12: Water object accuracy relative to imagery (center) and 2016 National Hydrography Dataset (NHD) (right). 

 

Not shown were water objects located outboard of the beach on the peninsula’s Gulf of Mexico 

side. There, saltwater was well classified except for narrow bands of turbulent water where ocean 

waves were breaking. These linear zones were typified by substantially different spectra, and thus 

were left unclassified. In the future, if the need arises, these frothy water zones could be 

incorporated into the water class via contextual algorithms. To summarize, the OBIA water object 

classification appeared quite good based on qualitative visual inspection. 

 

Buildings: Visual comparisons were made of all buildings and classified building objects within the 

assessment area. Buildings were classified primarily on a height above ground of 10 feet or more 

to exclude small structures like sheds, and a negative NDVI value to exclude tall vegetation. 1446 

buildings were located in the assessment area based on imagery. OBIA classified 1463 objects as 

buildings, of which 1388 were correctly classified. Therefore, provisional building accuracy was 

96%. Accuracies were provisional because the same data used in OBIA were also used in accuracy 

assessment; plus the same person doing the analysis also evaluated the accuracy (Congalton and 

Green, 2009). Appendix 3 contains a more detailed discussion of the buildings accuracy.  

 

Building omission errors were of two types. First were data inconsistency omissions resulting from 

differing acquisition dates (lidar-2006; imagery-2008). This omission type was most often 
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exemplified by buildings misclassified as water. This occurred because their height above ground 

was less than 10 feet since the building had not been built at the time lidar was acquired. All other 

omissions were labeled as “basic”. Forty-nine data inconsistency and nine basic omissions were 

observed. The provisional total omission error percentage was 4%. 

 

Commission errors or “false buildings” numbered 75. These were mostly bits of tree canopy (50), 

boats (12), water slides (2), microwave tower (1), windmill (1), water tower (1) and unknown (8). 

The occurrence of commission errors increased in areas where buildings were nestled amongst 

trees, for example homes in wooded neighborhoods; and in marina areas where boats were 

occasionally misclassified as buildings. The provisional commission error was 5%. Overall the 

Buildings classification looked quite good, but it could be improved in the future by manual editing.  

 

Roads: Early attempts to classify roads using imagery and elevation data alone resulted in 

significant amounts of non-road pavement, such as parking lots and driveways, being included in 

the Roads class. Repeated attempts to remove non-road features improved the classification, but 

overall it was still insufficiently accurate. Consequently, the rule set was modified to include 

proximity to Census road vectors as part of the road classification scheme. 

 

To assess OBIA roads accuracy, the actual (true), omitted and false road segments were digitized 

on-screen in ArcGIS based on imagery, and their lengths were compared (Figure 13). Actual road 

length was 45,580 meters. OBIA classified road length was 44,532 meters; correctly classified OBIA 

road length was 43,674 meters; omitted road length was 1,906 meters and false road length was 

858 meters. Therefore, provisional roads accuracy was 96%, omission error was 4% and 

commission error was 2%. In summary, the roads classification was quite good, but could be 

improved by using a more accurate road vector file. 

 

 
Figure 13: Digitized road segments within the accuracy assessment AOI. 
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Vegetation: Vegetation classes (trees, shrubs and low vegetation) were visually spot checked 

against imagery and lidar. Based on qualitative visual inspection, classification of vegetation in 

general looked good (Figure 14), as unclassified impervious surfaces and other objects types were 

nicely excluded. But subdivided low vegetation, shrub, and tree classes appeared less meaningful 

than anticipated. In particular, the height cutoff values appeared arbitrary. For example in the 

figure, notice that the tops of shrubs were classified as trees, while lower branches of trees were 

classified as shrubs. As discussed in the OBIA limitations section above, this a good example of how 

features on a continuum, in this case a height continuum, are more problematic for OBIA 

techniques. 

 

 
Figure 14 – Close-up view of the vegetation classifications. 

 

Therefore, a more simplified classification scheme is suggested for the future that has lower and 

taller vegetation classes only. While vegetation remains on a height continuum, the logic is that 

grasses and other short vegetation are different than trees/shrubs for disaster purposes. Key 

stakeholders should be consulted to determine whether this scheme is appropriate and what 

cutoff value would best suit their needs.  

 

2009 OBIA evaluation (post storm 1) 

Turning to the 2009 OBIA evaluation. OBIA classifications overall were good (see Figure 15, with more 

detailed views in Appendix 4.). But to obtain these results, some of the 2008 classification strategies 

were altered due to extensive hurricane damage. For one example, roofs damaged by the storm were 

commonly covered by blue FEMA tarps. These tarps had a slightly positive NDVI signature that caused 

them to be misclassified as vegetation. New rules were added to properly classify them as buildings.  
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The 2009 classification was not quite as accurate as the 2008 one. Stripping of vegetation by the storm 

(note the exposed light colored sand across approximately ¾ of the length of the peninsula) reduced 

2009 road accuracy relative to 2008. In 2008, roads that were abandoned or never developed were 

covered by vegetation and thus were not classified as roads. However, in 2009 the absence of 

vegetation allowed inactive roads to be included. Fortunately, by 2010, this problem was largely 

mitigated by vegetation regrowth. On the positive side for roads in 2009, tree/canopy loss reduced the 

amount of shaded roadway, which had previously diminished road accuracy in the 2008 data.  

 

One other issue that diminished accuracy were the lidar voids (note orange rectangles). Within these 

areas, nine buildings were left unclassified and several clusters of shrubs and trees were misclassified as 

low vegetation. Water, roads, and true areas of low vegetation appeared accurate. In the future, boats 

misclassified as buildings can be removed from the Buildings class using contextual rules. 

 

 
Figure 15: Post storm (2009) OBIA classified objects on 2009 TOP natural color imagery. 

 

2010 OBIA evaluation (post storm 2) 

Recall that that TNRIS recommended use of NAIP imagery for base map purposes. Since NAIP data are 

systematically acquired every few years across the United States, it was important to learn whether 

these data could be used as primary input for OBIA studies. Overall, the 2010 OBIA classifications looked 

reasonably good as can be seen in Figure 16 and in larger scale views in Appendix 5. However, marked 

spectral variations between image tiles and data inconsistencies made rule set development challenging.  
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Figure 16: Post storm (2010) OBIA classified objects on 2010 NAIP natural color imagery. 

 

These between-tile spectral variations were a particular issue for water, as bright sparkling water 

required different types of classification rules than darker water. Specifically, the more expansive NIR 

and brightness cutoffs required for bright water objects was paired with the requirement that that these 

objects also share borders with previously classified water. This is one example of how contextual 

algorithms give OBIA the edge over pixel-based approaches. 

 

Data set inconsistency was also a consideration for the 2010 time period. Recall that the 2009 lidar point 

cloud was used in both 2009 and 2010. By 2010, this lidar was older by a year or more than the imagery; 

and during that time, rapid changes were underway. In regard to buildings, the older lidar documented 

building loss, while the newer imagery documented new construction. To address this disparity, an 

additional object type called “New Buildings” was created just for the final time period to distinguish 

“Buildings” - classified using both imagery and lidar, from new buildings based primarily on spectral 

properties and proximity to road vectors and building shadows.  

 

Not surprisingly, the New Buildings class was less accurate and complete than the Buildings class that 

drew on elevation information. Nonetheless, this new class did provide a general understanding of the 

magnitude of the rebuilding effort and where these efforts were taking place (principally in beach front 

developments). Note new buildings (blue-green/teal) in Figure 16, Figure 18 and Appendix 5.  As with 

2009, misclassification of boats as buildings could be corrected by contextual rules relating to water. 
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Also observed were narrow bands of vegetation classification errors at the edges of some buildings. 

Differences in spatial accuracy, or perhaps spatial resolution between imagery and lidar, may have been 

responsible. The combination of positive NDVI from low vegetation in the imagery and elevated nDSM 

heights from buildings caused some building edges to be misclassified as trees or shrubs. Finally lidar 

data voids were again areas of lower confidence. Rule sets for all time periods are located in Appendix 6. 
 

Rule Set Reuse 

Two different reuse scenarios were tested. First, a rule set developed using small test areas was applied 

across a much larger geographic area. The whole area used the same base data sets. This reuse 

approach was successfully tested for all three time periods. Just to clarify, each period had its own suite 

of data and its own specific rule set that exploited that suite. 

 

The other scenario was reuse between time periods. This was tested twice, first when the 2008 rule set 

was applied to 2009 data and second, when the 2009 rule set was applied to 2010 data. In both cases, 

the rule set was not useful when applied blindly to data from different time periods. An example is 

shown in Figure 17, which shows the blind application of the 2009 rule set on 2010 data.  

 
Figure 17: Close-up views - Imagery alone (left), imagery with OBIA overlay (right). 

 

In the figure, notice that water and buildings were poorly classified, roads were fair and vegetation 

appeared good. Here, dramatic spectral differences between image tiles complicated the water 

classification. Buildings were omitted because of data inconsistencies between image and elevation data 

due to differing acquisition dates. As discussed above, new rules had to be added to solve these and 

other issues. Therefore, based on the results of this study, reuse of rule sets between time periods is not 

recommended. 

 

Change Through Time 

Final composited OBIA output from each time period was visually compared to output from other time 

periods. Figure 18 highlights the same set of beach-front communities for all three time periods.  
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Figure 18: OBIA classifications overlaid on imagery for pre-storm 2008, and post-storm 2009 and 2010. 
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Prior to the storm, vegetation was widely distributed; many buildings were evident; and an array of 

water bodies and roads were clearly visible. By 2009, 4-7 months after Hurricane Ike, the picture had 

changed dramatically. Vegetation and sediment had been stripped from many areas by storm surge. This 

was particularly pronounced closer to the Gulf shore. In the back beach, scoured lows where sand and 

dunes had been eroded were now filled with water. In addition, many buildings present in 2008 were 

absent, particularly in communities west of center in this figure. Roads looked similar to 2008, but by 

this time, storm transported sand and debris similar to that shown in Figure 5 had already been cleared. 

However, the partly collapsed bridge along State Highway 87 was still not repaired (Figure 19). 

 

 
Figure 19: Partly collapsed bridge along State Highway 87 was still not repaired in the 2009 analysis. 

 

By 2010, approximately a year and half after Ike, the picture had changed again. Vegetation was 

recovering, re-development was occurring (note blue-green/teal rectangles), and the beach had been 

restored. Again, the road network looked similar to previous time periods.  

 

Reconstruction was not evenly distributed. Beach front developments in particular began active 

recovery, while other areas remained derelict or appeared abandoned altogether. Figure 20 shows an all 

but abandoned inland residential development as of January 2016, more than seven years after the 

disaster. In summary, clear evidence of change was observable between all time periods. 
 

 
Figure 20: Photo shows part of an inland residential development, eastern Bolivar Peninsula, that remained all but 

abandoned more than seven years after Hurricane Ike. (Image credit: S. Zick; photo captured January 2016). 
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Discussion and Conclusions 

Based on this case study, OBIA analysis of remotely sensed data appears to be a good tool to support 

disaster stakeholders, especially to plan for events and to monitor recovery. Because of the time required 

to develop rule sets, OBIA is probably not the best option for the earliest response stage.  

 

Objects likely to be of interest to the disaster community were classified with a high degree of accuracy. 

Recall that rule sets alone were used for classification, with no manual editing. Clearly, appropriate 

manual editing would improve accuracies and are recommended if higher accuracies are needed.  

 

Rule sets were reused successfully over a wide geographic region when the same base data were input. 

However reuse across time periods, using different data, was not successful. This was disappointing as 

reuse between periods would have made OBIA more practical for the shortened time frames inherent to 

disaster response.  

 

Since the choice of OBIA objects is flexible as long as the size of the object is appropriate to the 

resolution of the data, and since expert knowledge is directly incorporated into the analysis, OBIA offers 

powerful advantages to the disaster community relative to more traditional pixel-based approaches. But 

the selection of appropriate objects, as well as key object properties and cutoffs, is critical to the 

process. This requires well trained analysts and a clear understanding of stakeholder needs.   

 

Red, green, blue and near-infrared image bands, normalized digital elevation models (height above 

ground) and road vectors were utilized for this project. Classifications using NAIP imagery were 

reasonably good, but the higher quality TOP imagery resulted in superior object classification. For 

regions undergoing rapid change as these were, coincident acquisition of image and lidar data is highly 

recommended.  

 

Finally, OBIA can document change through time. Both damage and recovery were clearly evident, 

which fostered additional questions. Why were some communities more badly damaged than others? 

Was this was due to differences in building construction, the height or shape of the protective dune line, 

focused storm intensity? Why was recovery progressing unevenly? Beach front communities were 

undergoing rapid re-development, while some of the inland developments were languishing. Perhaps 

this disparity was driven by economic factors or administrative ones, or perhaps something else entirely.  

 

Potential Uses and Future work 

So how specifically, can OBIA-derived objects offer value to disaster stakeholders? Beyond the displays 

already shown, OBIA objects can be used again and again in a GIS in combination with other types of 

data. For example, objects could be integrated with parcel or demographic data, with storm surge 

models, or with nesting bird populations. While potential uses are far too numerous to list exhaustively, 

Table 1 provides a partial listing of disaster applications where OBIA objects would be beneficial.  
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Table 1: Partial listing of disaster applications that could benefit from OBIA objects. 

 
 

Work for the future: 

1. Compare OBIA analyses from other hurricane-impacted areas, or areas impacted by different 

types of disasters, e.g. tornado, stream flood, landslide.  

2. Evaluate OBIA techniques using very high resolution UAS imagery and lidar data. 

3. Investigate the best methods to evaluate classification accuracy. Considerations are likely to be 

the size of individual objects and the percentage of the total area that each object type occupies. 

Rare or uncommonly small objects may require different approaches than very large individual 

objects (like merged ocean water) or object classes that cover a lot of territory. 

 

To summarize, project results provided strong support for OBIA in disaster analysis. OBIA classified 

objects were highly detailed and of good accuracy. Rule set reuse proved successful using the same data 

across a larger area, but was not effective with data from different time periods. OBIA was capable of 

documenting change through time. 
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Appendix 1: Summarized metadata for project. 
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Appendix 2: 2008 OBIA classifications - Larger scale view 
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Appendix 3:  2008 Accuracy Assessment for Buildings 

To determine the accuracy of building classifications, the accuracy AOI was subdivided into smaller 

regions (Figure 21). Then each building visible in the imagery was compared to the OBIA classified 

building objects, and discrepancies or comments were documented. Omitted buildings were compared 

to the nDSM to determine if they were new, too short to meet the 10-foot height cutoff, or basic 

omissions. Commission errors (false buildings) were labelled. The accuracy summary table for all regions 

is shown in Table 2 and the marked buildings assessment for each region follow.  

 
Figure 21 – Index map showing the nine regions examined at greater detail. 

 

Table 2: Buildings accuracy table listed by region and totaled by accuracy category.  
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Note: No and yes refers to whether a building was counted on this view (yes) or on an adjacent view. These images overlapped slightly. 
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Appendix 4: 2009 OBIA Classifications – Closer views 
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Appendix 5: 2010 OBIA Classifications – Closer views 
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Appendix 6: Final eCognition rule sets for 2008, 2009, and 2010 

Final rule set for 2008 
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… 

(all classes other than the six primary objects were re-classified as “unclassified”) 
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Final rule set for 2009 
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  ... 

                  (all classes other than the six primary objects were re-classified as “unclassified”) 

    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



47 

 

Final rule set for 2010
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… 

(all classes other than the seven primary objects were re-classified as “unclassified”) 

 


