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Abstract: Malaria due to the Plasmodium falciparum parasite and transmitted by the Anopheles 

mosquitoes continues to be a grave concern. Within the Greater Mekong Subregion (GMS) of Southeast 

Asia, efforts towards malaria elimination have reduced the overall malaria burden, and a better 

understanding of where Anopheles mosquitoes may be could contribute to these efforts. One means of 

accomplishing this is through the use of remote sensing, coupled with bioclimatic envelopes, to determine 

habitat for Anopheles mosquitoes within the GMS. In this report, we explore how Google Earth Engine 

can be utilized in the capacity with an emphasis on the processing workflow used for habitat 

classification. Preliminary examination of how Anopheles habitat has changed over time suggests that all 

species studied in the GMS have seen an expansion in habitat, although more work is needed to ensure 

that the habitat identified is accurate and not the result of an artifact introduced during the processing 

workflow.  

 

1 Introduction 

Malaria due to the Plasmodium falciparum parasite was responsible for 241 million cases and 627 

thousand deaths globally in 2020 (World Health Organization, 2021). While the majority of the disease 

burden is within Sub-Saharan Africa, the Greater Mekong Subregion (GMS) reported 65 thousand cases 

in 2021 and a total of 15 deaths in 2020 (The Mekong Malaria Elimination programme, 2022). The GMS 

region consists of Cambodia, Laos, Myanmar, Thailand, and Vietnam, along with Yunnan Province and 

the Guangxi Zhuang Autonomous Region of China and has seen declining malaria cases and mortality 

due to extensive efforts targeting malaria elimination by 2023. In 2021, China was certified as malaria 

free by WHO, and the remaining countries in the region continue to progress to elimination with 

Myanmar presently having the highest case burden with 53 thousand cases, or 82% of all cases in the 

GMS (The Mekong Malaria Elimination programme, 2022). While this progress is encouraging, the GMS 

region continues to be of broader concern due to identification of artemisinin resistance in the region 

(Ashley et al., 2014; Imwong et al., 2020). Presently, P. falciparum malaria within the GMS is commonly 

associated with forests and forested fringes (Vantaux et al., 2021), due to its associated Anopheles 

mosquito vector, thus allowing for remote sensing to be leveraged to identify possible areas of risk. 
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The P. falciparum parasite is an obligate parasite that requires both a human host and mosquito 

host as part of its lifecycle (Lang-Unnasch & Murphy, 1998). Infection of a human host occurs when a 

Anopheles mosquito carrying Plasmodium sporozoites takes a blood meal and the sporozoites migrate to 

the liver (Meibalan & Marti, 2017). During the liver stage, Plasmodium replicates until releasing 

merozoites into the blood stage, which in turn infect red blood cells and progress through ring, 

trophozoite, and schizont stages before new merozoites are released for further infection of red blood 

cells. During the blood stage, a limited number of parasites will proceed to the sexual gametocyte stage, at 

which point they migrate to the dermis allowing them to be taken up when an Anopheles mosquito takes a 

blood meal. While sporozoites may be cleared by the human host prior to the liver stage (Churcher et al., 

2017), infections are typically cleared during the blood stage and may or may not present symptoms. In 

the case of uncomplicated, symptomatic cases, P. falciparum malaria typically presents with non-specific 

symptoms of fever, chills, muscle aches, loss of appetite, headache, and cough (Zekar & Sharman, 2023). 

Progression to severe or fatal cases occurs in 1% to 2% of infections and is more likely to occur in 

children under five (Milner et al., 2020). 

Transmission of the P. falciparum parasite is solely through female Anopheles mosquitoes who 

take a blood meal; however, not all of the species are efficient at transmission as a result, only 30 to 40 

Anopheles mosquito species are commonly associated with the parasite (Nicoletti, 2020). Within the 

GMS, the Dirus complex is the common, and occurs in forest and forest-fringes, although precisely 

distinguishing between members of the complex can be a challenge (Hii & Rueda, 2013; Obsomer et al., 

2007). A growing concern is the possibility of range change in the Anopheles mosquito due to climate 

change (Karypidou et al., 2020), with rapid range shifts already having been demonstrated for African 

Anopheles mosquitoes (Carlson et al., 2023), and shifts in Anopheles dirus predicted for the South-East 

Asia and Western Pacific regions under various climate change scenarios (Liu et al., 2022). While the 

spatial distribution of Anopheles allows for significant heterogeneity in terms of where they can be found, 

specific Anopheles species are sensitive to their habitat (Castro, 2017). This leads to the association 

between Anopheles and forests in the GMS, when other bioclimatic factors are favorable (Durnez et al., 

2013; Hii & Rueda, 2013; Obsomer et al., 2007, 2012).  

Due to Anopheles mosquitoes being the sole vector for the P. falciparum parasite, it is possible to 

use remote sensing and geographic information systems (GIS) technologies to identify favorable habitat 

for the vector, thus isolating regions where P. falciparum malaria may be present as well. At broad level, 

remote sensing coupled with land cover classification has already proven effective at identifying forested 

regions and tracking forest cover change (Hansen et al., 2013). When narrowing focus to Anopheles 

mosquitoes, Ceccato et al. (2005) offered an early review of how remote sensing techniques were used to 
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predict the likely location of Anopheles mosquitoes in the African context. Centering on GMS, Obsomer 

et al. (2012) extended previous work in identifying the bioclimatic factors (Obsomer et al., 2007), to 

produce maps predicting the likely location of Anopheles mosquitoes. While their work was not 

dependent upon remote sensing, such data can be combined with artificial neural networks trained with 

historical patterns to develop a prediction model for malaria cases (Thakur & Dharavath, 2019). However, 

such models are limited since forward projections cannot consider malaria interventions (e.g., indoor 

residual spraying, long-lasting insecticide treated bed net distribution, etc.), although this is typically the 

case for all remote sensing applications. More recently, McMahon et al. (2021) used a combination of 

remote sensing and other geographic information (e.g., pre-computing land cover, topography, surface 

water, etc.) to assess the risk of malaria cases due to the P. falciparum and P. vivax parasites based upon 

the local geographic context. 

This prior work suggests that remote sensing, partially when completed with regionally centered 

geographical models, may have applications in predicting the habitat of Anopheles mosquitoes which in 

turn has implications for addressing P. falciparum malaria. In situations where malaria survey data is 

limited or non-existent (Brousse et al., 2020), models produced using remotely sensed data may allow for 

better policy interventions, such as improving the distribution of mosquito nets (Acheson et al., 2015). In 

this report, my work in leveraging Google Earth Engine and remote sensing to identify Anopheles habitat 

within the GMS region will be reviewed, along with the current results, and future work to be conducting. 

 

2 Methods 

2.1 Bioclimatic Envelopes 

Table 1. Table of parameters used based upon previous work by Obsomer et al. (2012) 

 A. baimaii A. crascens A. dirus s.s. A. dirus s.l. A. scanloni 

Annual Rainfall (mm) ≥ 1200 ≥ 2000 ≥ 1500 ≥ 1500 ≥ 1500 

Minimum temperature, 

coldest month (°c) 

12.5 20.0 12.5 11.0 15.0 

Annual mean 

temperature (°c) 

24.0 – 27.5 ≥ 25.0 24.0 – 27.5 23.0 – 27.5 ≥ 26.0 

SD of annual mean 

temperature (°c) 

0.5 – 2.5 0.0 – 1.0 0.5 – 2.5 1.0 – 5.0 0.0 – 2.0 



4 
 

 A. baimaii A. crascens A. dirus s.s. A. dirus s.l. A. scanloni 

Maximum temperature, 

coldest month (°c) 

28.0 28.0 26.0 24.0 28.0 

 

The basis of the of the system is a bioclimatic envelope, which is used to predict the extremes in 

distributions of a species, based upon the parameterization for GMS Anopheles mosquitos by Obsomer et 

al. (2012), utilizing the parameters outlined in Table 1. While the authors examined eighteen different 

variables in identifying the ecological niche occupied by the Anopheles mosquito, five were highlighted 

as statistically significant. These include annual rainfall, the minimum temperature of the coldest month, 

the annual mean temperature, and the maximum temperature of the coldest month which defines the 

upper bounds of survivability for the mosquitoes. Given that a limited number of variables were found to 

be highly predictive of the preferred habitat for the various Anopheles species, it is possible to use a 

highly constrained number of data sources as part of the workflow (see Table 2). The Anopheles species 

selected as part of the workflow is based upon the most common vectors of P. falciparum malaria in the 

GMS region (Hii & Rueda, 2013; Obsomer et al., 2012) with A. dirus sensu lato allowing for a broader 

categorization than A. dirus sensu stricto.  

 

Table 2. Data sources and source resolution 

Data Source Resolution Description 

CHIRPS Pentad 5566 meters, mm / pentad Precipitation data derived from 

0.05° resolution satellite 

imagery with in situ station data. 

Landsat 7 Visible, NIR, SWIR: 30 meters 

Panchromatic: 15 m 

Thermal: 100 m 

Used for imagery from 2000 to 

2013 

Landsat 8 Used for imagery from 2014 

onwards 

Terra Land Surface Temperature 

(MOD11A1.061) 

1000 meters Daytime land surface 

temperature in Kelvin 

 

2.2 Google Earth Engine 

Google Earth Engine is cloud-based platform that hosts satellite imagery and other global-scale 

geographic data sets, with additional analysis and visualization tools that can be used for data analysis. As 
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part of Google Earth Engine, Landsat and Sentinel-2 collections from Google Cloud Storage are exposed 

for use, and other tools such as Google Compute Engine and Google Cloud Machine Learning are 

leveraged for use by Google Earth Engine Users. 

Within the Google Earth Engine envelopment, there are three options for executing code. First is 

on-demand from within the Google Earth Engine development environment, 1,2 which provides both 

JavaScript development tools tailored to the Google Earth Engine environment, but also a map view and 

task manager for submitting longer running jobs to the Google Cloud environment. From the 

development environment it is possible to deploy applications (apps) that may be run by other users 

without needing access to the Google Earth Engine, offering the second means of access. However, users 

of apps are limited to the functionality that is implemented by the developer, similar to other web 

applications and desktop applications. Finally, Google Earth Engine offers a Python application 

programming interface (API) that allows access to the same computational functionality that can be 

accessed via the JavaScript development environment, including a means bulk queuing longer running 

jobs for processing within Google Cloud.3 

 

2.3 Processing Workflow 

While the same fundamental workflow (Figure 1) is used regardless of how the application is used, how 

the workflow is invoked is dependent upon how the application is accessed. When the web application is 

loaded (see Plate 1), data processing and the habitat raster are generated in real time – subject to timeout 

constraints – allowing the user to control the selected species, year, and location within the bounds of the 

GMS. However, production of raster data for more in-depth analysis is done via the command line 

interface and requests for rasters are queued for generation in the Google Cloud environment.4 In order to 

ensure consistency in the data used by both applications (e.g., training data, Landsat swaths covering the 

GMS, etc.) the JavaScript to Python functionality in the geemap library is used to convert relevant 

JavaScript files to Python with additional post-processing to ensure syntactically correct Python code. 

 

1 https://code.earthengine.google.com/ 
2 In order to use the Google Earth Engine development environment is necessary to have a Google account that has 

been granted access, either as a commercial or non-commercial (e.g., academic, non-profit, etc.) account 
3 While beyond the scope of this report, configuring the Python API can be a challenge and requires some working 

knowledge of Google Cloud configuration. For this project, a  Google Cloud service account was created to queue 

the Google Earth Engine jobs, necessitating additional scripting to retrieve data from the Google Drive associated 

with the service account. 
4 The total jobs are limited 3,000 as of April 2023 and the number of jobs that are run simultaneously is dependent 

upon Google Cloud’s resource allocation with paid subscribers receiving priority over academic users. 
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Figure 1. Data processing workflow implemented in Google Earth Engine. When the user uses the application, 

or a processing request is queued, imagery data is processed using the same workflow which utilizes CHIRPS 

Pentad precipitation, Terra Land Surface Temperature (MOD11A1.061) for the daytime, and Landsat imagery to 

habitat suitability.  

 

 

The overarching data processing workflow can thus be summarized as follows:  

1. Data specific to the year is generated: 

1.1. The CHIRPS Pentad within the GMS for the year is load and the total rainfall for the year is 

calculated, this is the annual precipitation raster.  

1.2. The Terra Land Surface Temperature within the GMS for the year is loaded and mean is 

calculated, this is the mean temperature raster.  

1.3. All available Landsat swaths within the GMS are loaded (e.g., date filter 2020-01-01 to 2020-12-

31), cloud masking is applied, and median of the image stack is taken.  

1.4. A CART classifier is trained, and used to classify the cloud masked, median Landsat imagery, 

this produces the classified raster. 

2. Data specific to the Anopheles species is generated: 
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2.1. The annual temperature raster is used to determine the days outside the temperature envelope for 

the species, this produces the days outside of envelope raster. 

2.2. The preferred habitat for the species is calculated based upon the total rainfall, mean 

temperature, and days outside of the temperature envelop using raster algebra (Listing 1), this 

produces the habitat suitability raster.  

3. After determination of habitat suitability, the malaria risk raster can be calculated based upon the 

proximity of development to possible Anopheles habitat. 

 

1. // Use raster algebra to score the best habitat 

2. exports.getHabitat = function(variables) { 

3.   // Find the terrain that is within the basic bounds for the species 

4.   var habitat = ee.Image(0).expression('(totalRainfall >= speciesRainfall) 

&& (daysOutsideBounds <= 30)', variables); 

5.    

6.   // Improve the score if terrain has the appropriate landcover (forest or 

heavy vegetation) 

7.   // and is within the mean annual temperature bounds 

8.   if (variables.speciesMeanLower == variables.speciesMeanUpper) { 

9.       habitat = habitat.expression('b(0) + \ 

10.         ((b(0) == 1) && \ 

11.          (landcover == 11 || landcover == 12) && \ 

12.          (meanTemperature >= speciesMeanLower))', variables); 

13.   } else { 

14.       habitat = habitat.expression('b(0) + \ 

15.         ((b(0) == 1) && \ 

16.          (landcover == 11 || landcover == 12) && \ 

17.          ((speciesMeanLower <= meanTemperature) && (meanTemperature <= 

speciesMeanUpper)))', variables); 

18.   } 

19.  

20.   // Rename the band and return 

21.   return habitat.rename('scored_habitat'); 

22. }; 

Listing 1. Source of the Earth Engine JavaScript raster algebra used to determine the bioclimatic envelope. 

 

A major component of the workflow is landcover classification of the Landsat imagery through 

the use of Classification and Regression Trees (CART) analysis implemented in Google Earth Engine as 

ee.Classifier.smileCart. A CART is a decision tree algorithm that utilizes training data to 

predict the appropriate class for unknown values (Bittencourt & Clarke, 2004) and is one of the 
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techniques employed in land cover classification (Bittencourt & Clarke, 2003; Xu et al., 2005). In order to 

train the CART, five Landsat swaths were selected that were imaged by both the Landsat 7 and 8 

platforms in 2020 and the cloud masked median of all over flights in the year was used as the basis of the 

training site. The imagery was then manually classified into one of nine classifications (snow, shadow / 

occulted, water, forest, vegetation, vegetation / scrub, barren, developed, and agricultural) based upon the 

broad spectral characteristics of a location. 

Development of the workflow proceeded by first implementing it using the JavaScript-based Google 

Earth Engine development environment. In addition to allowing a web application to be deployed, thus 

allowing users to explore the possible habitat for Anopheles vectors within the GMS region (see Plate 1),5 

it also allowed for the workflow to be evaluated for functional correctness before it was replicated in 

Python in order to use the Google Earth Engine API for job queueing. A command line tool was then 

developed that permutates on the standard deviation range of the mean of mean temperature, in steps of 

0.5°C, thus exploring the sensitivity of the predicted habitat to changes in the variable to be explored. 

Upon completion of the tool, jobs were then queued and downloaded for aggregation into tabular format 

and preparation of results. 

 

3 Results 

4 When comparing the 20-year change in habitat based upon the bioclimatic envelope using a 1 km2 pixel 

resolution, all Anopheles species saw an increase with A. baimaii increasing by 3.5% to 219,488 km2 , A. 

crascens by 88.3% to 148,461 km2, A. dirus s.l. by 2.7% to 292,193 km2, A. dirus s.s. by 21.9% to 

232,553 km2, and A. scanloni by 126.6% to 132,386 km2 (Results ). While an expansion in Anopheles habitat has been forecast as a result of climate change (Karypidou et 

al., 2020; Liu et al., 2022), more rapid expansion by A. crascens and A. scanloni suggest that additional 

work is needed for verify that the bioclimatic envelope is being calculated correctly given that the species 

prefer higher temperatures.  

 

5 https://rzupko.users.earthengine.app/view/gms-malaria  
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Figure 2. Change in Anopheles habitat over time. Note that the change in imaging platform from Landsat 7 to 

Landsat 8 did not appear to have an appreciable difference in the total habitat (in contrast to landcover 

classifications [Error! Not a valid bookmark self-reference.]). This suggests that habitat is likely constrained by 

climatic factors as opposed to landcover. 

 

 

Figure 3. Difference in landcover classification over time. Note the difference in landcover classification after the 

shift from Landsat 7 to Landsat 8 in 2014. 
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Landcover classification is largely consistent with expectations with areas projected as forest 

aligning with that identified by Obsomer et al. (2012) as such (see Plate 2). Likewise, agricultural land use 

appears to be consistent with other imaging. However, the CART appears to have issues distinguishing 

between developed and barren land, with the more mountainous Yunnan Province and Guangxi Zhuang 

Autonomous Region of China in the northern GMS being misclassified as developed land. Contrasting the 

landcover classification of Landsat 7 (see Plate 3), this appears to be more common with imagery from 

Landsat 8, although more work is required to isolate the cause of the misclassification. Furthermore, while 

the Anopheles habitat demonstrates an increase over time, the landcover classifications are largely consistent 

within the context of a specific sensor (i.e., Landsat 7 or Landsat 8); however, when the system switches from 

Landsat 7 to Landsat 8 in 2014 there is a marked change in the area classified as developed, barren, and 

forest; while vegetation shows a general upward trend (Figure 2. Change in Anopheles habitat over time. Note 

that the change in imaging platform from Landsat 7 to Landsat 8 did not appear to have an appreciable difference in 

the total habitat (in contrast to landcover classifications [Error! Not a valid bookmark self-reference.]). This 

suggests that habitat is likely constrained by climatic factors as opposed to landcover. 

 

 

Figure 3). This is consistent with the misclassification noted; however, given that there is not a 

dramatic change in the Anopheles habitat during this time it is possible that the discrepancies in landcover 

may be isolated to regions that are outside the climatic boundaries of the species.  

 

5 Discussion and Future Work 

The processing workflow developed and deployed Google Earth Engine application is effective at 

producing habitat projections at 1 km2 (see Plate 4) and demonstrates the effectiveness of leveraging 

cloud-based resources. However, three major areas of concern arose over the course of this project that 
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require additional exploration. The overarching objective of future work will be to address all of these 

concerns in the process of preparing a manuscript for peer review.  

First, while most of the bioclimatic variables identified by Obsomer et al. (2012) offer loose 

boundary conditions (i.e., rainfall greater than a given amount), the mean annual temperature has an 

associated standard deviation, indicating that additional sensitivity analysis is required as part of the 

process of identifying the Anopheles habitat. This is demonstrated by Plate 5 which illustrates the habitat 

for A. dirus s.s. when the annual mean temperature is increased to ±2.5°C and further reinforced by Plate 

6 which contains the difference after the two rasters subtracted from each other (i.e., habitat when ±2.5°C 

is added to the annual mean temperature range versus the identified range of 24 – 27.5°C). 

Next, it is unclear as to how significant an effect an increase, or decrease, in pixel resolution will 

have upon the total habitat. As suggested by Plate 3, decreasing the pixel resolution from 1 km2 to 25 km2 

results in an aggregation of underlying pixels, as well as an expansion of water pixels along clipping 

boundaries. In order to evaluate this, sensitivity analysis to the pixel resolution can be conducted to 

quantify the difference. 

Finally, the last major area of concern regards the CART classification of landcover and the 

inconsistent classification between Landsat 7 and Landsat 8, coupled with the misclassification of 

landcover. While misclassifications are generally to be expected and can be addressed as part of the 

communication of results (Sandler & Rashford, 2018), the intent of the processing workflow was for the 

same basis in training data to be used for both Landsat 7 and Landsat 8. Therefore , it is reasonable to 

conclude that consistent results should be produced when transition from Landsat 7 to Landsat 8 imagery. 

However, the notable change in classifications for development, barren, forest, and snow (Figure 3) 

indicates that it necessary to isolate the cause of the problem. However, it is important to highlight the 

extent to which misclassification may or may not be a concern. Given that the bioclimatic envelope 

model, and the processing workflow both assume that Anopheles mosquitoes will be in forested regions, 

misclassification of forest as vegetation (or vice versa) would have a larger impact than barren land being 

misclassified as developed (or vice versa). 

 

6 Conclusion 

This report examined how Google Erath Engine was leveraged along with bioclimatic envelopes for 

Anopheles mosquitoes in the GMS region to identify their possible habitat. In addition to demonstrating 

the effectiveness of Google Earth Engine as a platform with multiple approaches to data processing (i.e., 
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the developer environment, Python API, and deployed apps), a data processing workflow was produced 

and evaluated. While additional work is needed to assess the sensitivity of the habitat to the standard 

deviation in the range of the annual mean temperature determined by Obsomer et al. (2012), as well as the 

pixel resolution, the deployed web application is capable of allowing users to identify possible habitat at 1 

km2 resolution from 2000 onwards. The next steps are to continue the sensitivity analysis as well as 

examination of the inconsistent classification and misclassification of landcover in preparation of a 

manuscript to be submitted to Remote Sensing of the Environment. 

 

Availability of data and materials 

All source code associated with the project can be found on GitHub at https://github.com/rjzupkoii/gms-

malaria, the deployed Google Earth Engine application can be found at 

https://rzupko.users.earthengine.app/view/gms-malaria. 
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Plate 1. Screenshot of the deployed Google Earth Engine web application. 
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Plate 2. Landcover classification at 1km in 2020. Note that only a minimal amount of land is classified as snow in 

the north-north-east regions of the map and a significant portion of the mountains appear to be misclassified. 
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Plate 3. Illustration of how pixel resolution impacts landcover. Produced using classified Landsat 7 imagery from 2001, note that as the pixel resolution 

decreases from 1 km2 (left) to 25 km2 (right), Google Earth Engine aggregates classifications down to the lower resolution and additional water pixels may  

appear along clipping boundaries (i.e., coastlines). 
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Plate 4. Habitat map for A. dirus s.s. at 1 km2 resolution with no sensitivity to annual mean temperature 

applied. 
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Plate 5. Habitat map for A. dirus s.s. at 1 km2 resolution when the annual mean temperature applied is 

changed to ±2.5°C the identified range of 24 – 27.5°C. 
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Plate 6. Raster algebra difference highlighting the increase in A. dirus s.s. habitat when the standard 

deviation is applied to the annual mean temperature range. 

 


