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I. INTRODUCTION 

Terrain analysis is crucial for determining suitable helicopter landing zones (HLZ) based 

on safety concerns and operational tasks. GIS software and various methodologies, such as 

pathfinder (in-person) operations, imagery interpretation, and slope analysis, have been 

developed to accurately identify landing zones that meet defined criteria related to safety, 

obstacle avoidance, slope, weather conditions impacting the terrain, accessibility, size, tactical 

considerations, and emergencies. 

However, the previously mentioned methodologies do not integrate the non-visible 

region of the electromagnetic spectrum, specifically the red, green, blue, and near-infrared 

bands and the unique reflections for each land cover class. This capstone project will explore 

the object-based (oriented) classification of imagery using spectral measurements to identify 

terrain features suitable for helicopter flight operations. Object-Based/Oriented Classification is 

a two-step process that first segments an image based on the spectral values of each pixel to 

identify the edges of homogeneous regions or "objects." The second step of the process is to 

classify those objects based on distinctive topological properties. (Campbell and Wynne, 2011) 

Trimble's eCognition software will segment and classify land cover using imagery data 

from the National Agriculture Imagery Program and LIDAR data from the United States 

Geological Survey to determine if the land is suitable. That criterion includes the slope of the 

terrain and the NDVI or Normalized Density Vegetation Index (healthy metric) and 

Normalized Density Water Index (water body content) indices. These vegetation and water 

indices will provide valuable metrics to determine Landing Zone Suitability remotely to mitigate 
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safety concerns with the soft or arid ground. LIDAR data processing will provide the 

normalized Digital Surface Model (nDSM). It is important to note that the Normalized 

Difference Moisture Index (NDMI), which provides insight into moisture levels in vegetation, 

would also add to this research. However, that calculation requires using the SWIR region of 

the EM spectrum, which is not available from the 4-band imagery that this capstone utilized. 

II. LITERATURE REVIEW 

The following literature review summarizes some of the research and information that 

will be foundational to object-based classification research for landing zone identification, which 

is the emphasis of this capstone project. 

A. TECHNIQUES AND METHODOLOGIES 

Several methods for identifying helicopter landing zones use in-person reconnaissance, 

geographic information systems, and imagery interpretation to analyze the terrain based on 

specific criteria. The U.S. Army Field Manual 3-21.38, Chapter 4, presents the criteria for 

identifying feasible landing zones based on size, slope, terrain, and the approach to those areas. 

Those determinating parameters are the size of the aircraft as well as the mission requirements. 

However, this manual intends to use the "in-person" methodology by Army Pathfinders, trained 

to use this approach. Pathfinders aim to find areas large enough for the aircraft, not too steep 

in elevation (slope), and free of terrain attributes that could be vertical or horizontal 

obstructions like trees, brush, water, or rocks.  

Olson (1979) discussed a methodology that utilizes imagery interpretation, and 

geographic information systems (GIS) use that criterion outlined in the U.S. Army Field Manual 
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as parameters in various geoprocessing tools to analyze terrain data. The difference in Kaljahi 

(2019) countered those methodologies when researching automatic zone detection systems for 

the safe landing of UAVs by using neighboring pixel algorithms and image segmentation. 

Unfortunately, Kaljahi's methodology only explored segmentation and classification to find flat 

land in urban areas in emergency landing scenarios. There is no mention of image segmentation 

for rural areas or the terrain considerations that come with it. 

Mertova and Bures' (2021) and Bradley (2022) do not have that gap in their focus. The 

article heavily emphasized the complex analysis of terrain features needed to identify landing 

zones falling more in line with the Field Manual 3-21.38 and the incorporation of GIS technology 

to analyze slope and available vector landcover datasets. These articles do not include image 

segmentation for Object-based Information Extraction with eCognition software. 

B. NORMALIZED DIFFERENCE INDICES 

The capstone study will include the Normalized Difference Vegetation Index (NDVI) 

and Normalized Difference Water Index (NDWI). EOS Data Analytics (2024) defines NDVI as 

measuring the vegetation's greenness and density captured in a satellite image. Javed (2023) 

used land surface temperature to monitor agricultural drought in Afghanistan. Research in 

articles by Bo-Cai Gao (1996) and McFeeters (2013) focused on identifying liquid water for 

crop yield and mosquito abatement detection, respectively. 

NDWI and NDVI have similar characteristics but differ in their calculations' use of 

specific regions of IR reflection within the electromagnetic spectrum. The articles from Gao 

(1996) and Mcfeeters (2013) focused not on helicopter landing zone identification. However, 

they offered helpful information that will aid in determining safety concerns related to ground 
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conditions that may be too soft or too arid for helicopter landings. Measuring how dry or low 

NDWI is has the potential to help identify "Brown-Out" conditions, where a helicopter lift 

creates a dust cloud that can cause pilots to lose their orientation and thus crash. 

Using NDVI measurements to analyze vegetation density will help identify regions 

within vegetation density restrictions found in the U.S. Army Field Manual (2006) and help 

define parameters inside the eCognition software. Additionally, NDVI is used to identify other 

types of vegetation harmful to operations, such as trees or bushes. Trees are vertical 

obstructions that will impact how a helicopter approaches a landing zone so the aircraft does 

not collide or land on top of vegetation that could get caught in the rotary wings. 

C. HELICOPTER LANDING ZONE STUDIES 

Previous helicopter landing zone studies typically included raster datasets inside of 

GIS. P. Kroh (2020) explored the step-by-step instructions on identifying helicopter landing 

zones with commercial imagery and predetermining vector datasets that outlined the landcover 

classes. This study used LIDAR to determine the slope of the possible landing sites, but not 

from an object-based classification perspective. One thing that this study and this capstone will 

have in common, other than the data types, is the employment of visual verification. Visual 

verification uses imagery interpretation to confirm the output from the raster algebra, 1s, and 

0s math based on pixel values. Verification is helpful because it compares what the eCognition 

software spectrally identified as trees with what imagery analysis visually identifies as trees.  

Mertova and Bures' (2021) also used raster algebra to identify landing sites that met 

specific dimension criteria using general geoprocessing tools inside the GIS. Essentially, this 

study identified all groups of pixels that met the slope criteria and then converted those to a 
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vector shapefile. Areas that resulted in specific shapes (circles or ovals) and sizes were 

determined to be usable for specific airframes. Visual interpretation was also focused on these 

areas to identify any vertical and horizontal obstructions, e.g., trees, bushes, or water, that 

would interfere with the safe landing of helicopters. 

III. DATA 

The first dataset for this capstone project is Light Detection and Ranging (LIDAR). 

LIDAR measures distances to objects and surfaces using laser pulses. The basic principle of 

LIDAR is the emission of laser pulses and measuring the time it takes for the light to bounce 

back after hitting an object. LIDAR creates precise three-dimensional representations of the 

surveyed area in the form of individual data points that create "point clouds." These clouds are 

densely packed and provide highly detailed information about the Shape and characteristics of 

the objects.  

General Summary of the Metadata of the LIDAR LAZ dataset: 

Entity ID: 

USGS_LPC_North_Carolina_SANDY_LiDAR_LA_37_21809102_.laz 

USGS_LPC_North_Carolina_SANDY_LiDAR_LA_37_21809104_.laz 

USGS_LPC_North_Carolina_SANDY_LiDAR_LA_37_21809202_.laz 

USGS_LPC_North_Carolina_SANDY_LiDAR_LA_37_21809204_.laz 

USGS_LPC_North_Carolina_SANDY_LiDAR_LA_37_21809304_.laz 

USGS_LPC_North_Carolina_SANDY_LiDAR_LA_37_21900101_.laz 

USGS_LPC_North_Carolina_SANDY_LiDAR_LA_37_21900102_.laz 

USGS_LPC_North_Carolina_SANDY_LiDAR_LA_37_21900201_.laz 

USGS_LPC_North_Carolina_SANDY_LiDAR_LA_37_21900202_.laz 

USGS_LPC_North_Carolina_SANDY_LiDAR_LA_37_21900203_.laz 
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USGS_LPC_North_Carolina_SANDY_LiDAR_LA_37_21900303_.laz 

USGS_LPC_North_Carolina_SANDY_LiDAR_LA_37_21900204_.laz 

USGS_LPC_North_Carolina_SANDY_LiDAR_LA_37_21900304_.laz 

USGS_LPC_North_Carolina_SANDY_LiDAR_LA_37_21901101_.laz 

USGS_LPC_North_Carolina_SANDY_LiDAR_LA_37_21901203_.laz 

State: North Carolina, Virginia 

Agency: United States Geological Survey 

Vendor: American Society for Photogrammetry and Remote Sensing (ASPRS) 

Datum: North American Datum 1983 

Resolution (Point Spacing): Various 

Source DEM: 1.524 Meter 

Unit: Meters 

Sensor Type: Linear Mode LIDAR 

Project Name: NC Sandy L 14 2024 

Acquisition Date: 27 January – 21 March 2014 

The objects that LIDAR data details include terrain, buildings, vegetation, and others. 

This detailed data can generate products such as digital elevation models (DEMs), digital surface 

models (DSMs), and contour maps that can provide slope and other terrain characteristics. 

The second dataset used for this project capstone is imagery from the National 

Agriculture Imagery Program (NAIP). NAIP is a United States program that annually collects 

aerial imagery of agricultural terrain orthorectified and captured at a ground resolution of one 

meter or less. This imagery accurately provides crop conditions and land use, making this an 

excellent dataset for image segmentation and classification. Each land cover class will have 

different spectral measurements. These measurements, once known, can be used to generalize 
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parameter rulesets for eCognition to perform object-based image segmentation and, thus, 

landcover classification in a streamlined process. 

General metadata summary of NAIP imagery: 

NAIP Entity ID: M_3607525_SE_18_060_20220625 

State: North Carolina 

Agency: United States Department of Agriculture (USDA) 

Vendor: USDA-FSA-APFO (Aerial Photography Field Office) 

Map Projection: UTM (Universal Transverse Mercator) 

Projection Zone: 18N 

Datum: North American Datum 1983 

Resolution: 0.6 meters 

Units: Meter 

Number of Bands: 4 (typically Red, Green, Blue, and Near-Infrared) 

Sensor Type: CNIR (Color Near-Infrared) 

Project Name: 202205_NORTH_CAROLINA_0X6000M_UTM_CNIR 

Acquisition Date: June 25, 2022 

 

Analysis of NAIP imagery calculates and collects the NDVI and NDWI measurements 

and other spectral properties. According to EOS Data Analytics, NDVI is calculated from the 

visible and near-infrared (NIR) bands of satellite imagery using the formula: (NIR - Red) / (NIR + 

Red), where NIR and Red represent the reflectance values in the near-infrared and red spectral 

bands. Meanwhile, the calculation for NDWI metrics uses the formula (Green - NIR) / (Green 

+ NIR). (2024)  
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Combining these spectral metrics and LIDAR helps to define the terrain's slope; the 

capstone project will be able to provide measurement data of the groundwater and lack thereof 

in the form of NDVI and NDWI. These indices are derived from remote sensing data and 

provide valuable information about the Earth's surface. They serve distinct purposes related to 

vegetation health, moisture content, and water body detection. Each index has its unique 

advantages and applications. They are often combined to gain comprehensive insights into 

environmental conditions and, therefore, can be used to create eCognition rulesets to identify 

land cover within specified spectral ranges. For example, if an individual wanted to identify the 

grass landcover class spectrally, they would establish a ruleset parameter to find terrain within 

ranges of high NDVI and low nDSM metrics. In other words, there is healthy vegetation and a 

low surface height. Since vegetation height is a critical safety concern to HLZs, the analysis must 

identify the vegetation, its height, moisture, and water indices.  

Figure 1 shows the study area along the coastline near the North Carolina and Virginia 

border, rich with waterways, ponds, trees, and wetlands landcover classes. Moreover, this 

study region boasts various land cover types, including fields that may show seasonal suitability 

and potential "brown-out" areas. Seasonal suitability is a way to characterize terrain with 

different attributes; thus, suitability depends on the season in which the data collection 

occurred. An example would be a field full of crops. At specific points of the year, that Field will 

be flat and just a dirt field. At other times of the year, that Field could have corn or other crops 

growing to various heights. As stated, to analyze the various land cover categories identified 

using NAIP data, Trimble's eCognition software and LIDAR-derived surface models developed 

with ESRI's ArcGIS Pro software are used. 
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Figure 1: Study area for HLZ Suitability Analysis near Knotts Island, North Carolina. 
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IV. METHODOLOGY AND SOFTWARE 

The capstone project uses the following methodology, summarized in several steps. 

First, LIDAR point cloud data, retrieved from the United States Geological Survey 3DEP LIDAR 

Explorer Application, will be converted from LAZ compression files to LAS format using ESRI's 

ArcGIS Pro, consolidating them into a new LAS dataset, and clipping the mosaiced file to the 

study area outlined in Figure 1. 

Using LIDAR data enables the creation of a Digital Elevation Model (DEM) using Ground 

Points and the Digital Surface Model (DSM) using First Return points, which will be interpolated 

and converted into a raster format. The DEM represents the bare Earth and actual topographic 

features, while the DSM represents the highest points across the landscape. By subtracting the 

DEM from the DSM, a nDSM layer was created to represent features' height above ground 

level, i.e., vertical obstructions, which exports to a .TIFF file format for feature height analysis in 

Trimble's eCognition. The DEM, exported to a .TIFF format, will be used to analyze the slope 

of the terrain. 

The third step will use the NAIP imagery analyzed in eCognition to create NDVI and 

NDWI indices. In eCognition, the supervised object-based segmentation of NAIP imagery uses 

three algorithms: quadtree-based segmentation, multi-resolution segmentation emphasizing 

vegetation and water contrast, and spectral difference segmentation.  

The reason for multiple algorithms is that using a single segmentation algorithm is 

unlikely to produce all the objects needed for feature extraction, especially when targeting 

multiple, diverse features such as tree canopies and bodies of water. To effectively obtain 

accurate feature extraction of multiple landcover classes, it may be necessary to employ 



 

 

multiple segmentation algorithms. On the other hand, one routine used to extract a specific 

feature of interest will likely be entirely different from another feature type. In short, using 

three algorithms enables a specific but comprehensive 

extraction of various features present in the data. Each 

algorithm conditions the data for the following algorithms to run 

on.  

Quadtree segmentation (Figure 2) is the first technique 

that divides the NAIP imagery into smaller squares of varying 

sizes, unlike traditional methods such as chessboard 

segmentation, which creates equal-sized squares. This approach 

intelligently creates more homogeneous squares based on input 

layers and parameter settings. Quadtree is a preliminary step 

before merging with algorithms like Multi-Resolution 

Segmentation and Spectral Difference. Coupling quadtree 

segmentation with these merging algorithms enables the 

creation of meaningful objects with computational time, 

which is especially beneficial for generating objects required for 

subsequent analysis. (UVM, n.d.)  After Quadtree Segmentation, 

the Ruleset moves on to Multi-Resolution Segmentation.  

Multi-resolution segmentation (Figure 3) is an efficient 

algorithm suitable for various datasets, including imagery and 

LiDAR data. It is a default choice when uncertainty exists 

about the most appropriate segmentation algorithm. Then, the spectral difference segmentation 

Figure 2: Screenshot of Quadtree Segmentation. 12 April 2024 

Figure 3: Screenshot of Multi-Resolution Segmentation. 12 April 2024 

Figure 4: Spectral Difference Segmentation. 14 April 24 



 

 

(Figure 4) algorithm merges objects with similar layer values, which is particularly useful for 

spectrally distinct features like water or impervious surfaces. This method capitalizes on the 

principle that objects with different compositions or 

conditions exhibit varying colors in spectral imagery, allowing 

enhanced segmentation based on spectral variance observed in 

scenarios such as agricultural fields with different crop stages 

or varying vegetation types. (UVM, n.d.)  

These processes segment the image to an appropriate 

pixel grouping across all land cover classes based on similar 

spectral metrics. Figure 5 visualizes the study by emphasizing 

NIR measurements. Based on those spectral groupings, the 

capstone assigned one of nine land cover classes (Figure 6). 

Manual object image exploration (i.e., selecting pixels from 

across the image and gathering measurements) collected 

various metrics from objects from each of the landcover 

classes in each of the 4-Bands (Red, Green, Blue, NIR) and 

metrics from the calculations related to NVDI and NDWI 

indices.  

Table 1 below presents data on various parameters for different land cover types. The 

parameters include spectral values such as Red, Blue, Green, and Near-Infrared (NIR) bands, as 

well as derived metrics like the nDSM, NDWI, NDVI, and other statistical measures like Z-

Deviation, Homogeneity, and Contrast. 

Figure 5: Screenshot of Segmented NAIP emphasizing the 

NIR Band of the 4-Band imagery. 14 April 24 

Figure 6: Screenshot of Classified NAIP with each landcover 

symbolized. 14 April 24 



 

 

 Table 1: Imagery Interpretation Data for Segmented Objects     

Buildings Red Blue Green NIR nDSM NDWI NDVI Z-Dev Homog Contrast 

1 128.88 123.95 133.00 109.37 2.98 0.09 -0.08 1.25 0.09 1042.72 

2 94.35 92.42 99.26 58.85 3.77 0.25 -0.21 1.34 0.06 1573.46 

3 136.00 103.22 123.77 131.01 3.85 -0.04 -0.01 2.14 0.08 954.96 

4 137.51 128.45 140.55 113.84 9.38 0.10 -0.10 2.26 0.14 923.55 

5 176.36 156.25 170.31 167.40 3.77 0.00 -0.02 1.21 0.21 1054.95 

6 213.26 203.91 209.30 218.75 2.74 -0.02 0.01 1.22 0.23 1806.79 

Mean 147.73 134.70 146.03 133.20 4.42 0.064 -0.068 1.57 0.135 1226.07 

Median 136.76 126.20 136.78 122.43 3.77 0.05 -0.05 1.30 0.12 1048.84 

Min 94.35 92.42 99.26 58.85 2.74 -0.04 -0.21 1.21 0.06 923.55 

Max 213.26 203.91 209.30 218.75 9.38 0.25 0.01 2.26 0.23 1806.79 

Standard Deviation 41.38 40.47 38.67 54.71 2.48 0.11 0.08 0.49 0.07 370.36 

                      

Water Red Blue Green NIR nDSM NDWI NDVI Z-Dev Homog Contrast 

1 95.73 76.14 106.86 15 0.004 0.75 -0.73 0.04     

2 57.31 56.94 61.28 15 0.64 0.61 -0.58 0.35 0.92 5077.02 

3 15.47 53.19 31.75 15.04 0.45 0.36 -0.01 0.33 0.94 1066.01 

4 65.97 58.08 65.69 15.01 0.09 0.62 -0.63 0.5 0.99 102.54 

5 59.02 58.57 61.28 16.11 0.06 0.58 -0.57 0.17 0.81 2734.65 

6 68.95 59.63 70.01 15.01 0.62 0.65 -0.64 1.02 0.95 829.1 

Mean 60.41 60.43 66.15 15.20 0.31 0.60 -0.53 0.40 0.92 1961.86 

Median 62.50 58.33 63.49 15.01 0.27 0.62 -0.61 0.34 0.94 1066.01 

Min 15.47 53.19 31.75 15.00 0.00 0.36 -0.73 0.04 0.81 102.54 

Max 95.73 76.14 106.86 16.11 0.64 0.75 -0.01 1.02 0.99 5077.02 

Standard Deviation 26.01 8.01 24.10 0.45 0.29 0.13 0.26 0.34 0.07 1990.24 

                      

Forest/Trees Red Blue Green NIR nDSM NDWI NDVI Z-Dev Homog Contrast 

1 78.17 66.36 89.25 194.35 9.45 -0.37 0.43 6.81 0.06 1127.96 

2 82.07 69.34 90.33 182.81 9.88 -0.34 0.38 7.92 0.054 954.68 

3 65.15 60.83 73.59 176.52 11.69 -0.41 0.46 4.89 0.03 1574.15 

4 76.06 65.56 84.38 184.15 11.6 -0.37 0.41 6.61 0.05 994.55 

5 85.14 69.31 91.95 183.82 4.79 -0.33 0.37 5.5 0.05 805.04 

6 82.4 69.14 90.46 186.47 4.44 -0.35 0.39 4.41 0.05 989.91 

Mean 78.17 66.76 86.66 184.69 8.64 -0.36 0.41 6.02 0.05 1074.38 

Median 80.12 67.75 89.79 183.99 9.67 -0.36 0.40 6.06 0.05 992.23 

Min 65.15 60.83 73.59 176.52 4.44 -0.41 0.37 4.41 0.03 805.04 

Max 85.14 69.34 91.95 194.35 11.69 -0.33 0.46 7.92 0.06 1574.15 

Standard Deviation 7.15 3.33 6.91 5.79 3.25 0.03 0.03 1.32 0.01 265.71 

                      

Grass/Short 
Vegetation Red Blue Green NIR nDSM NDWI NDVI Z-Dev Homog Contrast 

1 112.2 85.4 117.28 193.45 0.1 -0.24 0.26 0.67 0.17 557.85 



 

 

2 102.62 77.77 108.04 190.58 1.73 -0.28 0.3 4.97 0.14 509.57 

3 113.51 87.69 118.28 193.42 0.13 -0.24 0.26 0.86 0.15 372.55 

4 106.98 84.92 114.47 198.57 0.16 -0.27 0.3 0.94 0.2 585.41 

5 114.19 88.12 119.16 195.33 0.16 -0.24 0.26 1.05 0.16 660.01 

6 115.41 88.97 120.28 192.85 0.42 -0.23 0.25 2.18 0.15 518.46 

Mean 110.82 85.48 116.25 194.03 0.45 -0.25 0.27 1.78 0.16 533.98 

Median 112.86 86.55 117.78 193.44 0.16 -0.24 0.26 1.00 0.16 538.16 

Min 102.62 77.77 108.04 190.58 0.10 -0.28 0.25 0.67 0.14 372.55 

Max 115.41 88.97 120.28 198.57 1.73 -0.23 0.30 4.97 0.20 660.01 

Standard Deviation 4.97 4.09 4.48 2.69 0.64 0.02 0.02 1.65 0.02 95.91 

                      

Roads Red Blue Green NIR nDSM NDWI NDVI Z-Dev Homog Contrast 

1 139.37 119.55 137.8 157.37 0.003 -0.07 0.06 0.01 0.04 2052.28 

2 139.03 125.08 138.68 134.65 0.21 0.01 -0.02 1.31 0.09 1584.85 

3 142.27 126.74 140.74 137.16 0.02 0.01 -0.02 0.19 0.08 2304.66 

4 143.71 129.05 142.28 131.56 0.31 0.04 -0.04 1.61 0.09 1731.73 

5 146.17 130.26 144.76 139.89 1.97 0.02 -0.02 4.35 0.08 2300.86 

6 140.33 127.35 140.11 128.5 0.25 0.04 -0.04 1.39 0.09 1854.43 

Mean 141.81 126.34 140.73 138.19 0.46 0.01 -0.01 1.48 0.08 1971.47 

Median 141.30 127.05 140.43 135.91 0.23 0.02 -0.02 1.35 0.09 1953.36 

Min 139.03 119.55 137.80 128.50 0.00 -0.07 -0.04 0.01 0.04 1584.85 

Max 146.17 130.26 144.76 157.37 1.97 0.04 0.06 4.35 0.09 2304.66 

Standard Deviation 2.78 3.78 2.52 10.22 0.75 0.04 0.04 1.56 0.02 298.90 

                      

Wetlands/Marsh Red Blue Green NIR nDSM NDWI NDVI Z-Dev Homog Contrast 

1 90.9 75.53 92.69 153.42 0.03 -0.25 0.26 0.06 0.04 1264.16 

2 84.18 69.4 84.47 139.36 0.05 -0.24 0.25 0.11 0.04 1157.75 

3 78.79 68.27 88.68 188.8 0.21 -0.36 0.41 0.21 0.07 1403.93 

4 73.22 65.09 77.3 126.77 0.16 -0.24 0.27 0.17 0.05 1363.28 

5 74.51 64.93 78.56 137.44 0.24 -0.27 0.3 0.78 0.05 1054.77 

6 74.8 62.6 79.04 162.39 0.11 -0.34 0.37 0.72 0.07 705.39 

Mean 79.40 67.64 83.46 151.36 0.13 -0.28 0.31 0.34 0.05 1158.21 

Median 76.80 66.68 81.76 146.39 0.14 -0.26 0.29 0.19 0.05 1210.96 

Min 73.22 62.60 77.30 126.77 0.03 -0.36 0.25 0.06 0.04 705.39 

Max 90.90 75.53 92.69 188.80 0.24 -0.24 0.41 0.78 0.07 1403.93 

Standard Deviation 6.91 4.58 6.24 22.23 0.09 0.05 0.07 0.32 0.01 256.67 

                      

Bare Soil/Fields Red Blue Green NIR nDSM NDWI NDVI Z-Dev Homog Contrast 

1 163.75 126.24 151.54 177.14 0.03 -0.08 0.04 0.42 0.14 561.39 

2 149.72 114.85 139.35 169.03 0.01 -0.09 0.06 0.2 0.11 428.78 

3 142.41 109.66 133.54 159.36 0.01 -0.09 0.06 0.27 0.11 319.84 

4 141.08 107.48 131.98 162.87 0.08 -0.1 0.07 0.76 0.1 463.78 

5 131.23 99.02 122.52 150.6 0.01 -0.1 0.07 0.02 0.11 629.47 



 

 

6 145.2 109.5 136.67 172.29 0.002 -0.11 0.08 0.03 0.1 302.1 

Mean 145.57 111.13 135.93 165.22 0.02 -0.10 0.06 0.28 0.11 450.89 

Median 143.81 109.58 135.11 165.95 0.01 -0.10 0.07 0.24 0.11 446.28 

Min 131.23 99.02 122.52 150.60 0.00 -0.11 0.04 0.02 0.10 302.10 

Max 163.75 126.24 151.54 177.14 0.08 -0.08 0.08 0.76 0.14 629.47 

Standard Deviation 10.80 9.02 9.56 9.59 0.03 0.01 0.01 0.28 0.01 129.67 

                      

Pavement Red Blue Green NIR nDSM NDWI NDVI Z-Dev Homog Contrast 

1 186.35 169.61 183.81 185.47 0.27 -0.004 -0.002 1.07 0.19 1178.16 

2 170.99 143.89 164.85 185.86 0.05 -0.06 0.04 0.23 0.1 1533.51 

3 196.76 177.59 192.38 194.93 0.06 -0.006 0.004 0.19 0.2 1639.54 

4 183.98 164.85 179.94 184.29 0.39 -0.01 0 1.65 0.18 987.64 

5 184.37 166.64 180.74 185.25 1.12 -0.01 0.002 2.65 0.15 1376.34 

6 171.39 147.93 165.67 172.39 0.01 -0.02 0.004 0.02 0.06 1869.92 

Mean 182.31 161.75 177.90 184.70 0.32 -0.02 0.01 0.97 0.15 1430.85 

Median 184.18 165.75 180.34 185.36 0.17 -0.01 0.00 0.65 0.17 1454.93 

Min 170.99 143.89 164.85 172.39 0.01 -0.06 0.00 0.02 0.06 987.64 

Max 196.76 177.59 192.38 194.93 1.12 0.00 0.04 2.65 0.20 1869.92 

Standard Deviation 9.79 13.09 10.74 7.19 0.42 0.02 0.02 1.03 0.06 319.42 

Table 1: Imagery Interpretation Data for Segmented Objects 

The Red, Blue, Green, and NIR bands represent the spectral reflectance values for each 

object. Next, the nDSM values indicate each object's height above the ground level. NDWI 

values reflect water content, with negative values suggesting non-water surfaces. Additionally, 

NDVI values indicate vegetation density and health, with higher values indicating denser 

vegetation. Furthermore, Z-Deviation represents each object's height deviation from the mean. 

Homogeneity measures the uniformity of spectral values within each object's area. Finally, 

contrast indicates the variation in spectral values within each object's area. 

The table also includes summary statistics such as mean, median, minimum, maximum, 

and standard deviation for each parameter across all objects within each landcover type. These 

statistics provide insights into the overall distribution, variability, and typical values for the 

spectral and derived metrics among the objects in the dataset. 



 

 

The final piece of the current process is the identification of the land cover objects 

whose measurements fall within specific ranges associated with water levels observed through 

the NDVI and NDWI measurements per object. These indices provide valuable insights into the 

environmental conditions and vegetation health across different regions. EOS Analytics (n.d.) 

outlines that the NDVI ranges from -1.0 to 1.0, with negative values primarily indicating areas 

covered by clouds, water bodies, or snow. Values between 0.2 and 0.3 typically represent 

shrubs and meadows, while the range of 0.6 to 0.8 indicates temperate and tropical forests. 

NDVI is essential because this measurement, plus a higher nDSM measurement, indicates 

vertical hazards like trees and tall grass that can potentially mask other hazards to a landing 

helicopter. 

On the other hand, the NDWI offers insights into water-related features, ranging from 

0.2 to 1.0 for water surfaces and 0.0 to 0.2 for areas affected by flooding or high humidity. 

Negative values ranging from -0.3 to 0.0 suggest moderate drought or non-aqueous surfaces. In 

contrast, values from -1.0 to -0.3 indicate severe drought or non-aqueous areas. These indices 

are crucial in delineating water bodies, assessing moisture levels, and identifying areas 

experiencing varying degrees of water stress or inundation. These are all potential hazards to 

lacking helicopters. Areas with water stress and low moisture levels, like bare fields that lack 

vegetation to mitigate dust, are the most likely to produce a "brown-out" condition as a 

helicopter comes into land. 

Of note is that the Normalized Difference Moisture Index (NDMI), again not used here, 

provides further granularity in assessing vegetation health and moisture content. Ranging from -

1.0 to 1.0, the NDMI distinguishes between bare soil, different levels of canopy cover, and 

water stress conditions. Understanding these ranges enables precise mapping and monitoring of 



 

 

environmental conditions, aiding in decision-making processes related to land use, agriculture, 

and water resource management. However, this index calculation requires the Short-Wave 

Infrared (SWIR) band, and the appropriate imagery data was unavailable. The utilization of 

NDMI would be beneficial for follow-on research. 

V. RESULTS AND FINDINGS 

The following is a summary of the NIR, NDVI, NDWI, and nDSM measurements of the 

land cover classifications that indicate "brown-out" potential or water-inundated areas as well 

as additional land cover types not feasible for landing, i.e., open bodies of water, tall grass, and 

forest, are also summarized. 

Comparing these results to the NVDI and NDWI ranges provides insight into the 

terrain and the potential for the stated hazards. The NDWI values Range: 0.2 – 1 – Water 

surface, 0.0 – 0.2 – Flooding, humidity, -0.3 – 0.0 – Moderate drought, non-aqueous surfaces, 

and -1 – -0.3 – Drought, non-aqueous surfaces. The NDVI value Range: 0.1 or less - empty 

areas of rocks, sand, and snow; 0.2 to 0.3 - shrubs and meadows; 0.6 to 0.8 - temperate and 

tropical forests. (EOS Analytics, n.d) 

Data for Wetlands/Marsh objects indicates significant variations across different metrics. 

The NIR values range from 126.77 to 188.80, with an average of 151.36 and a standard 

deviation of 22.23. The nDSM values vary between 0.03 and 0.24, averaging 0.13 with a 

standard deviation of 0.09. The NDWI ranges from -0.36 to -0.24, with a mean of -0.28 and a 

standard deviation of 0.05. These objects Mean borders the Flooding and Moderate Drought 

ranges for NDWI. Lastly, the NDVI spans from 0.25 to 0.41, averaging at 0.31 with a standard 

deviation of 0.07 bordering between meadows and tropical forests. This is expected for these 



 

 

areas as plants in meadows and tropical forests typically have high measurements of NDVI due 

to ample water content, like marshes and wetlands. 

The data for Bare Soil/Fields reveal distinct characteristics compared to other land 

cover types. NIR values range from 150.60 to 177.14, with a mean of 165.22 and a standard 

deviation of 9.59. The nDSM values are relatively low, ranging from 0.00 to 0.08, with an 

average of 0.02 and a standard deviation of 0.03. NDWI values for this land cover type vary 

between -0.11 and -0.08, averaging at -0.10 with a standard deviation of 0.01.  

This NDWI range, which indicates moderate drought and non-aqueous surfaces, could 

indicate rainfall just before the imagery acquisition date or humidity in the air settling on the 

terrain and not fully absorbed. Imagery interpretation of the imagery identified objects within 

the bare soil and fields landcover that were darker in color than the others. This is assessed to 

be areas possibly containing higher water levels and which are not absorbing as quickly as the 

surrounding objects. This assessment is made on the fact that bare fields should have low 

NDWI and NDVI measurements. This assessment is supported by the low NDVI values ranging 

from 0.04 to 0.08, with a mean of 0.06 and a standard deviation of 0.01, indicating rocks, sand, 

or snow based on the predetermined ranges. Moderate drought conditions and low NDVI 

measurements could be associated with "brown-out" conditions, even more as the NDWI 

measurements near -1.  

Water bodies exhibit distinct spectral signatures in the imagery data. NIR values range 

from 15.00 to 16.11, with a mean of 15.20 and a standard deviation of 0.45. The nDSM values 

range from 0.00 to 0.64, averaging 0.31, with a standard deviation of 0.29. NDWI values span 

from 0.36 to 0.75, with a mean of 0.60 and a standard deviation of 0.13. NDVI values vary 



 

 

significantly from -0.73 to -0.01, with a mean of -0.53 and a standard deviation of 0.26. These 

readings align with NDWI and NDVI ranges. These ranges also provide a comparative variable 

by knowing how bodies of Water, Wetlands, and Little/No Water land cover classes present 

via object-based classification. 

Forests and tree-covered areas demonstrate specific spectral characteristics in the 

imagery data. NIR values range from 176.52 to 194.35, with a mean of 184.69 and a standard 

deviation of 5.79. The nDSM values range from 4.44 to 11.69, averaging 8.64, with a standard 

deviation of 3.25. NDWI values are relatively stable, ranging from -0.41 to -0.33, with an 

average of -0.36 and a standard deviation of 0.03. NDVI values range from 0.37 to 0.46, with a 

mean of 0.41 and a standard deviation of 0.03.  

The critical takeaways from the measurements for the Forest and Tree covered are the 

nDSM and the NDVI. Trees are inherently tall, so their nDSM is a great way to segment and 

classify them as hazardous to aircraft. Coupling their nDSM with their high NDVI metrics, it is 

easy to identify them as tall – plants, more than likely trees. Trees also indicated a low NDWI. 

The assessment is that these low metrics result from any water not being held in the vegetation 

due to gravity and absorption.  

A similar assessment is made with the Grass/Short Vegetation data. NIR values range 

from 190.58 to 198.57, with a mean of 194.03 and a standard deviation of 2.69. The nDSM 

values range from 0.10 to 1.73, averaging 0.45, with a standard deviation of 0.64. NDWI values 

are within the Moderate Drought Range, varying from -0.28 to -0.23, with an average of -0.25 

and a standard deviation of 0.02. NDVI values range in the Shrubs and Meadows, with a range 

of 0.25 to 0.30, with a mean of 0.27 and a standard deviation of 0.02. 



 

 

These output ranges can be used to establish rulesets that exclude land cover with 

those ranges on follow-on datasets or symbolize them accordingly for a mission planner to 

know to avoid. As a result, a table of measurements or index ranges starting points for future 

ruleset development that identifies hazardous areas based on the ranges associated with each 

landcover classifications. In general, an analyst could reference the graph below, and the 

NDWI/NDWI ranges for quick decision-making. 

 High/Med NDVI Low NDWI Low/Med nDSM 

Low NDVI  Fields/Dirt, "Brown-Out" Potential 

High/Med NDWI Marsh/Wetlands, "Soft 

Ground" 

 Bodies of Water or Grass/Shrubs 

High nDSM Trees "Vertical Hazards"  

VI. DISCUSSION AND CONCLUSION 

In conclusion, terrain analysis is critical in identifying safe and suitable helicopter landing 

zones based on various operational and safety factors. Traditional in-person reconnaissance and 

GIS-based approaches have long been used to assess terrain suitability for landing operations. 

However, these methods often lack integration with non-visible regions of the electromagnetic 

spectrum, which can provide valuable insights into land cover characteristics and moisture 

content crucial for HLZ determination. 

This capstone project aimed to bridge this gap by exploring object-based imagery 

segmentation and classification using spectral measurements, explicitly focusing on the red, 

green, blue, and near-infrared bands. By leveraging Trimble's eCognition software, alongside 

LIDAR data and imagery from the NAIP, the project successfully identified terrain features 



 

 

suitable for helicopter flight operations. Through a comprehensive methodology involving 

LIDAR data processing, digital elevation modeling, and image segmentation using multiple 

algorithms like quadtree segmentation, multi-resolution segmentation, and spectral difference 

segmentation, the project extracted meaningful insights regarding terrain suitability for HLZs. 

Incorporating indices such as the NDVI and NDWI provides valuable metrics related to 

vegetation health, water content, and moisture levels. These metrics and terrain slope data 

derived from LIDAR contribute to a holistic assessment of terrain conditions impacting 

helicopter operations. While this study does not utilize the NDMI due to data limitations, its 

potential significance in assessing vegetation health and moisture content underscores avenues 

for future research utilizing Short Wave Infrared (SWIR) imagery. 

Overall, this capstone project contributes to advancing the understanding of terrain 

analysis techniques for helicopter landing zone suitability assessments, integrating remote 

sensing data and object-based classification methodologies to enhance safety and operational 

efficiency in helicopter flight operations. 

 This research furthers the discussion and serve as an initial step towards refining and 

enhancing the application of the discussed techniques for future use, specifically focusing on 

creating eCognition rulesets to identify land cover-specific measurements based on distinct 

requirements. This advancement is crucial for enabling planners, whether in military or civilian 

contexts, to effectively utilize tools like ArcGIS or eCognition to identify potential hazards as 

part of established methodologies. It lays the groundwork for a more targeted and precise 

approach to land cover analysis, contributing to improved decision-making processes related to 

terrain suitability and safety considerations. 



 

 

It is imperative to acknowledge that while these remote sensing methodologies provide 

valuable insights, no single method can offer a definitive and flawless solution. Analytical 

judgment and imagery interpretation remain paramount, especially when considering dynamic 

factors such as weather conditions over specific time frames and diverse terrain compositions, 

including clay, dirt, or sand. Weather patterns and rainfall, for instance, are crucial in dust 

mitigation, impacting mission planning and operational outcomes significantly. Understanding the 

interplay between weather events and terrain characteristics is essential for mitigating dust-

related hazards and overall mission success, weather intelligence gathering, and operational 

logistics such as ingress and egress strategies, especially those on foot. Moreover, 

considerations such as the geological features of the area and other operational limitations 

further underscore the complexity of terrain analysis and the need for a multifaceted approach 

to decision-making in mission planning and execution. 
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