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Abstract 

This capstone paper explores the application of YOLO-NAS (You Only Look Once - Neural 
Architecture Search), a modern deep learning algorithm, in improving the mapping accuracy of 
electrical grid assets through satellite imagery analysis. Electrical grid mapping, crucial for 
efficient asset management and disaster recovery, currently relies heavily on manual inspection, 
which is prone to errors. YOLO-NAS, known for its real-time processing capabilities and high 
precision, is employed to automate the detection and localization of grid components such as 
wooden poles and streetlights. By leveraging YOLO-NAS, this study aims to reduce human error 
and increase the efficiency of grid mapping. The project utilizes a dataset of 2082 satellite 
images, annotated to identify these objects. The results demonstrate a mean average precision 
(mAP) of 54.7%, with precision and recall metrics indicating moderate success in object 
detection. While the performance of the model is promising, several limitations to the experiment 
exist, therefore, more work needs to be done to accurately assess the efficacy of the model to 
identify these objects. 



Introduction 

In the realm of Geographic Information Systems (GIS), organizations in the energy sector often 
face challenges in accurately locating and mapping electrical grid assets in both urban and rural 
areas. Tasks such as identifying the positions of assets like electrical poles from satellite imagery 
rely heavily on visual inspection. This can lead to positional errors in mapping, hindering 
planning, operations, and disaster recovery. Deep learning algorithms optimized for object 
detection offer a valuable solution to improve the efficiency and accuracy of mapping electrical 
grid assets. These algorithms can automate the detection and localization of grid components 
from satellite imagery, minimizing human error and variability. In this project, a modern 
computer vision deep learning algorithm called YOLO-NAS (You Only Look Once - Neural 
Architecture Search), known for its speed and accuracy, will be trained using a dataset of 
satellite imagery with wooden poles and streetlights labeled using common annotating 
techniques. The central question is: can modern object detection algorithms enhance electrical 
grid asset management? 

Background Research 
 
Deep Learning and Computer Vision 
 
Deep learning is a subset of Artificial Intelligence (AI) and Machine Learning (ML). It was 
introduced in the early 2000s after other neural networks became popular. Early on, deep 
learning was not adopted due to its lack of scalability because of its demand for computing 
power and the lack of huge datasets. Since then, it has become a popular method for data 
analysis because of the growth of viable high-end computational resources and the abundance of 
available data (Roboflow 2020). Deep learning has seen major success in industries ranging from 
weather forecasting (Zaytar and Amrani 2016), stock market prediction (Rather et al. 2015), 
speech recognition (Sak et al. 2015), object detection (Liang 2015), character recognition (Zhang 
et al. 2017), landslide detection (Mezaal et al. 2017), time series prediction (Che et al. 2018), 
video processing (Xu et al. 2018), and many more.  
 
Computer vision is a method of deep learning that focuses on enabling computers to identify and 
understand objects and people in images and videos (Khan et al. 2021). In a foundational sense, 
computer vision instructs machines to understand, grasp, and analyze high-level understanding 
of visual concepts – basically seeking to analyze images in the same way people do (Khan et al. 
2021). Uses of computer vision include object recognition, object detection, video tracking, 
object segmentation, pose and motion estimation, scene modeling, and image restoration (Morris 
2004). In this paper, I focus on the object detection method of computer vision that modern deep 
learning models employ.  
 
Deep Learning Models and Remote Sensing 

Deep learning has found various applications in the field of remotely sensed data, particularly in 
object detection. Beyond this, there are other key tools and techniques in computer vision that 



are worth noting. Image classification is one such technique, involving training models on 
diverse landcover types. This enables the models to accurately represent soil moisture, vegetation 
density, and topography (Affonso et al., 2017). Another significant application is change-
detection, which quantitatively analyzes surface changes over time (Khelifi et al. 2022). This 
technique also leverages deep learning to process labeled landcover types and track changes in a 
specified area over time. The convergence of deep learning with satellite imagery in object 
detection has become a pivotal theme, particularly in the context of enhancing infrastructure 
mapping and grid efficiency. This is explored in various studies, including those by Groener et 
al. (2019), Nguyen et al. (2020), Huyan et al. (2021), Van Etten (2018), Gudžius et al. (2021), 
and Khan et al. (2021). These studies show how deep learning models optimized for object 
detection can identify small objects in satellite imagery.  

YOLO (You Only Look Once) 

Deep learning techniques related to remote sensing, including image classification, change 
detection, and object detection, rely on several foundational models. These include 
Convolutional Neural Networks (CNN), Deep Belief Networks (DBN), Deep Boltzmann 
Machines (DBM), Restricted Boltzmann Machines (RBM), and Stacked Autoencoders 
(Voulodimos et al. 2018). CNNs are particularly prominent due to their effectiveness in 
representing spatial patterns and extracting features from remotely sensed data (Diwan et al., 
2022). In the subfield of object detection, CNN-based models like YOLO (You Only Look 
Once) have proven especially proficient. YOLO is a single-stage model optimized for real-time 
object detection, demonstrating high accuracy and efficiency in identifying small objects in 
satellite imagery (Redmon 2016; Nguyen 2020). The model processes images in one pass, 
predicting bounding boxes and class probabilities simultaneously, achieving double the mean 
average precision (mAP) compared to other real-time detectors (Redmon 2016). The 
development of YOLO has continued with iterations up to YOLOv9, and now YOLO-World. 
YOLO-World introduces an AI version trained on various objects and enables users to prompt 
the model to identify specific items, building on the foundation laid by YOLOv9 (Roboflow 
2023). These iterations address previous model limitations while retaining the core functionality 
of training and testing, advancing the field of object detection (Roboflow 2023). 

 
Yolo-V8 and Yolo-NAS 
YOLO-V8 is an advanced version of the YOLO object detection framework known for its 
improvements in speed and accuracy. Building on V8’s foundation, YOLO-NAS integrates 
Neural Architecture Search (NAS) to optimize the model's architecture (Medaramatla et al. 
2024). This integration automates the process of finding the most efficient architecture, 
improving both performance and efficiency (Terven et al. 2023). YOLO-NAS also utilizes 
quantization-aware training blocks, maintaining high accuracy even when quantized to lower 
precision (Terven et al. 2023). This makes the model suitable for edge devices with limited 
computational resources (Terven et al. 2023). Moreover, AutoNAC (Automated Neural 
Architecture and Configuration) fine-tunes configuration parameters such as batch size and 
learning rate, ensuring the model is not only architecturally optimal but also configured to 
deliver the best performance for specific tasks (Terven et al. 2023; Saluky et al. 2024). This has 



led to significant improvements over previous YOLO versions in terms of precision and 
processing time, making YOLO-NAS an ideal choice for real-time applications, particularly for 
mobile and embedded systems (Roboflow 2023). I selected YOLO-NAS as the algorithm to test 
in this project because that is the model currently available in Roboflow’s free tier. YOLO-NAS 
has been found appropriate to identify objects in various media such as surveillance footage 
(Saluky et al. 2024), detecting building boundaries (Tasyurek 2024), and smoke and wildfire 
detection in satellite imagery (Casas et al. 2023). 

Model Evaluation 

Common evaluation metrics for computer vision model performance include mean average 
precision (mAP), recall (R), and precision (P) (Harris and Glowacz 2021; Nguyen et al. 2020; 
Padilla et al. 2020; Padilla et al. 2021). 

• mAP (Mean Average Precision): This metric is the primary comparison point for all 
deep learning models and is largely based on IoU (Intersection over Union), which 
measures the overlap between the predicted and ground truth bounding boxes (Padilla et 
al. 2020). 

• IoU Probability Threshold: Typically set at 0.5, this threshold determines whether a 
prediction is a true positive or a false positive (Nguyen et al., 2020; Padilla et al., 2020). 

• Precision (P): This measures the accuracy of positive predictions, indicating how many 
of the predicted bounding boxes match the ground truth (Padilla et al. 2020; Nguyen et al. 
2020). 

• Recall (R): Recall gauges the model's ability to detect all relevant cases, reflecting how 
many of the ground truth bounding boxes were correctly predicted (Padilla et al. 2020; 
Nguyen et al. 2020). 

Using these metrics provides an opportunity to objectively evaluate and compare model 
performance tested in this project. 

Data and Methodology 

Data acquisition 

In developing a deep learning model capable of identifying electrical grid objects within satellite 
imagery, the construction of a comprehensive and well-prepared training dataset is paramount. 
This endeavor begins with the strategic acquisition of satellite images, which will serve as the 
foundation for training and subsequent analysis. I acquired 30cm resolution satellite images from 
Maxar’s sample data which is freely available on their website (Maxar Technologies 2023). This 
dataset contains 2500 total images taken overhead of a certain region of Germany and is meant to 
be used to train deep learning algorithms on identifying solar panels. Even though the dataset has 
a different purpose, the images capture parts of the overhead electrical distribution network in 
the area.  

Image Annotation 



The process of building this training dataset involves meticulous preparation, including data 
annotation and image preprocessing. Annotation of datasets for deep learning applied to satellite 
and aerial imagery is a critical step in preparing for accurate object detection. Data annotation is 
a labor-intensive but critical step, requiring the manual delineation of electrical grid objects 
within the images. This process is facilitated by annotation tools such as Roboflow (Roboflow 
2023). It streamlines the process of annotating images by providing tools for manual annotation. 
Roboflow supports a variety of annotation types, including bounding boxes, polygons, and 
segmentation masks, catering to different object detection and segmentation needs. Images were 
stored in Roboflow’s cloud service and the electrical distribution objects were labeled using the 
bounding box method in the application (Roboflow 2023). I labeled two types of electrical 
distribution objects: wooden poles that are used to support overhead wires, and streetlights. 
These objects were categorized in the same class as “Pole”. An example of this can be seen 
below (Figure 1). I annotated 824 images from the initial set and divided these images in the 
following manner: 629 training images, 111 validation images, and 84 test images.  

 

Figure 2 shows the process of labeling electrical distribution structures in the acquired satellite imagery. 

Image Preprocessing 

Image preprocessing is a crucial step in training an algorithm, aimed at ensuring that datasets are 
standardized and ready for training models. Roboflow provides several preprocessing options. 
There are a few steps in the image preprocessing process that I have outlined here. The first step 
is auto-orientation. This step strips the EXIF metadata from images, ensuring they are displayed 
in the same orientation as they are stored on disk (Roboflow 2023). This prevents inconsistent 
orientations that might silently ruin object detection models. The next step is to resize each 
image. Resizing pixels modifies the image size to a specified set of dimensions. I set the image 
resizing to 640 x 640; this setting is recommended by Roboflow because it is optimal for model 
training (Roboflow 2023). The third step in preprocessing is adjusting the contrast of each image. 
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This step helps balance contrast across the dataset, making it easier for neural networks to detect 
edges and improve overall model performance (Roboflow 2023). 

Data Augmentation 

Data augmentation is a critical step in training robust computer vision models, particularly in the 
Roboflow platform, where it serves to enhance the training dataset and improve model 
performance. Data augmentation addresses the limitation that collected datasets might not 
capture every real-world scenario a model could encounter (Roboflow 2023). By creating 
variations from existing data, it provides new training samples, allowing the model to generalize 
better across a broader range of situations. Roboflow offers a range of augmentation techniques. 
I chose to flip each image creating a mirror image from each original (Figure 3) as well as to 
rotate each image along its horizontal and vertical axis (Figure 3) (Roboflow 2023). This 
extended my initial training dataset from 629 images to 2082 images.  

 

Figure 4 demonstrates how an image is flipped to create a mirror image of the original. This is a common computer 
vision data augmentation technique. 
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Results 

The algorithm was trained in Roboflow in three individual sessions using progressively more 
images, as more images were added to the dataset. The third and final session achieved the 
highest metrics discussed above: mean average precision (mAP) of 54.7%, 74.4% precision (P), 
and 40.6% recall (R). 

 

Figure 6 illustrates the mean average precision (mAP) metric during the final training session of the YOLO-NAS 
algorithm.  

Figure 5 demonstrates rotating images along horizontal and vertical axes to create copies of the original 
image. Another common data augmentation technique. 
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Figure 7 illustrates the precision (P) during the final training session of the YOLO-Nas algorithm. 

 

Figure 8 illustrates the recall (r) of the algorithm during the final training session. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

Analysis 

The mAP result (Figure 6) shows how the mAP evolved throughout the training session with 
data points marking the mAP scores at specific iterations (Roboflow 2023). The upward trend 
indicates an improvement in the model’s ability to make an accurate prediction over time and 
indicates that the algorithm is converging towards higher accuracy and then it plateaus toward 
the end suggesting that training has reached a point where further improvements are marginal 
and that the model has learned as much as possible.  

Precision measures the accuracy of positive predictions by indicating the proportion of correctly 
identified objects (true positives) out of all predicted objects. The precision graph (Figure 10) 
illustrates a general upward trend where the model is increasingly accurate at identifying true 
positives to false positives, suggesting the model improves over time.  

Recall (Figure 8) measures the model's ability to detect all relevant instances of an object, or 
how many of the ground truth bounding boxes were correctly predicted by the model. It 
evaluates the proportion of true positives among all actual positives. The graph's progression 
indicates that the model's precision improves over time, reflecting the model's increasing ability 
to correctly identify objects.  

Discussion 

The Mean Average Precision (mAP) of 54.7%, indicates that the model is moderately successful 
in accurately predicting bounding boxes and classifying them correctly. The graph also shows an 
upward trend, with convergence indicating that further improvements become marginal over 
time. The precision score of 74.4% suggests that a significant proportion of the model's positive 

© 2023 Maxar Technologies. This imagery is provided under the Creative Commons Attribution-NonCommercial 4.0 International Public License. 
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predictions are accurate, matching ground truth bounding boxes. However, fluctuations in the 
graph may indicate variability in model performance across different test data. The recall score 
of 40.6% indicates that the model successfully detects relevant cases for a substantial portion of 
ground truth instances. The graph shows an upward trend with some variability, suggesting 
potential for further training to stabilize its detection capabilities. 

The convergence patterns in the precision and recall graphs demonstrate the model's progress 
towards a balanced performance. Precision and recall scores reflect a trade-off: while the model 
is accurate in its positive predictions, it struggles to detect all relevant cases. The mAP score 
consolidates these measures, indicating an overall moderate performance. Further training 
iterations and dataset tuning could refine the model's accuracy and detection capabilities. 

It is my presumption that these results reflect considerations that were made during the 
annotation process. The algorithm itself, YOLO-NAS, has been found to be successful in recent 
research at identifying a number of different objects (Saluky et al 2024; Casas et al. 2023; 
Tasyurek 2024; Anand et al. 2023). There is little work done related to YOLO-NAS’s efficacy to 
identify smaller objects in satellite imagery such as electric utility poles. However, since NAS is 
simply V8 with optimized neural architecture there is little evidence here to suggest the model is 
incapable of identifying these objects. Likely, the consideration to classify all objects together 
(wooden poles with cross arms and streetlights) “confused” the model. This is suggested in the 
fluctuations in precision and recall. During the annotation process, I found there to be far fewer 
large wooden electric poles used for structure of overhead wires. The ratio of wooden poles to 
streetlights in the imagery was almost 20:1 in favor of streetlights. Similarly, the consideration of 
capturing the shadows of these objects could have affected this result. It was difficult to see 
either type of pole in the image unless the object casted a shadow in the image, this likely led to 
specific occurrences of false positive where the model predicted an object was present but there 
was no object in the image such as the example in Figure 9 Left. In these cases, straight lines 
like roadside curbs or fences look like shadows of poles.  

Future Work 

It is evident the annotation process needs to be refined. Classifying the types of poles separately 
will likely strengthen model performance. Furthermore, while Roboflow’s ease of use was high, 
going through this process on open-source software would likely increase overall control of each 
step and result in a more robust and refined model. More work needs to be done to assess the 
initial research question.  
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