Using Natural Language Processing to Perform Spatial Searches of Open Street Map Features In ArcGIS

> Faculty Advisors: Dr. Alex Klippel Dr. Jan Wallgrün

> > Gary Huffman grh145@psu.edu

### **Presentation Overview**

- Problem Overview
- Search Using ArcGIS Desktop "Out of the box"
- Open Street Map
- Natural Language Processing
- Spatial Language and Spatial Representations
- Proposed System Architecture and Implementation
- Next Steps and Follow-on Work

# **Problem Overview**

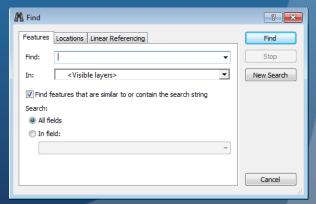
#### Motivation

- Limitations of search in ArcGIS Desktop
  - SQL-based -- RDBMS and shapefiles
  - Slow with large databases
- Pervasiveness of Open Street Map
  - Lots of data
  - Contains places of interest that are not available in other data sets
  - Increasing popularity: Apple iPhoto & Four Square
  - Basemap option in ArcGIS Desktop (yet no search)
- User familiarity with natural language search

#### Objective

- I will integrate aspects of Natural Language Processing into ArcGIS to search Open Street Map data
  - Spatial Search and Topological Relationships
  - Attribute Search

# Search Using ArcGIS Desktop


### • Select by Attribute

- Users construct SQL statements
- Requires basic understanding of database schema and SQL
- Use of 'like' in query gets close matches

### • Find

- Fuzzy search
- Inflexible (Starbucks != starbucks)
- Slow with large datasets

| Select By At                                          | tributes                                                            | ? ×   |
|-------------------------------------------------------|---------------------------------------------------------------------|-------|
| Layer:                                                | Vienna_points                                                       | •     |
| Method:                                               | Only show selectable layers in this list     Create a new selection |       |
| "OBJECTII<br>"NAME"<br>"ALT_NAM<br>"TYPE"<br>"SUBTYPE | U"                                                                  | T III |
| _% ((                                                 | And Or                                                              |       |
| Clear                                                 | Verify Help Load OK Apply                                           | Save  |



# Search Using ArcGIS Desktop

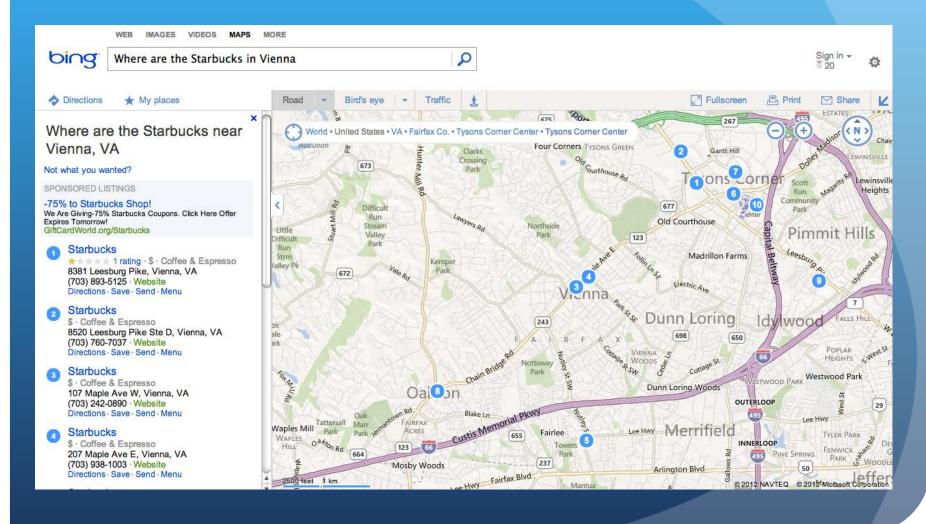
### Select by Location

- Spatial and topological relationships
  - Containment (In/On)
  - Intersection
  - Equality
  - Nearby (Proximity distance)
- Specify source and target layers
- Features selected beforehand
- Differences and meanings of the spatial selection methods

| Select By Location                                                                                                                              | ? <b>X</b>                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Select features from one or more target layers based on their locat<br>relation to the features in the source layer.                            | ion in                      |
| Selection method:                                                                                                                               |                             |
| select features from                                                                                                                            | •                           |
| Target layer(s):                                                                                                                                |                             |
| ☐ Vienna_points<br>☐ Vienna_lines<br>☐ Vienna_poly                                                                                              |                             |
|                                                                                                                                                 |                             |
| Only show selectable layers in this list                                                                                                        |                             |
| Source laver:                                                                                                                                   |                             |
| Vienna points                                                                                                                                   | -                           |
| Use selected features (0 features selected)                                                                                                     |                             |
|                                                                                                                                                 |                             |
| Spatial selection method:                                                                                                                       |                             |
| Target layer(s) features intersect the Source layer feature<br>Target layer(s) features intersect the Source layer feature                      |                             |
| Target layer(s) features intersect (3d) the Source layer feature                                                                                | Â                           |
| Target layer(s) features are within a distance of the Source layer for<br>Target layer(s) features are within a distance of (3d) the Source lay |                             |
| Target layer(s) features are within a distance of (50) the source la<br>Target layer(s) features contain the Source layer feature               | yer reature                 |
| Target layer(s) features completely contain the Source layer featur                                                                             |                             |
| Target layer(s) features contain (Clementini) the Source layer feature<br>Target layer(s) features are within the Source layer feature          | ure E                       |
| Target layer(s) features are completely within the Source layer fea                                                                             |                             |
| Target layer(s) features are within (Clementini) the Source layer fe<br>Target layer(s) features are identical to the Source layer feature      | ature                       |
| Target layer(s) features touch the boundary of the Source layer fe                                                                              |                             |
| Target layer(s) features share a line segment with the Source layer                                                                             | r feature<br>over feature 🔻 |

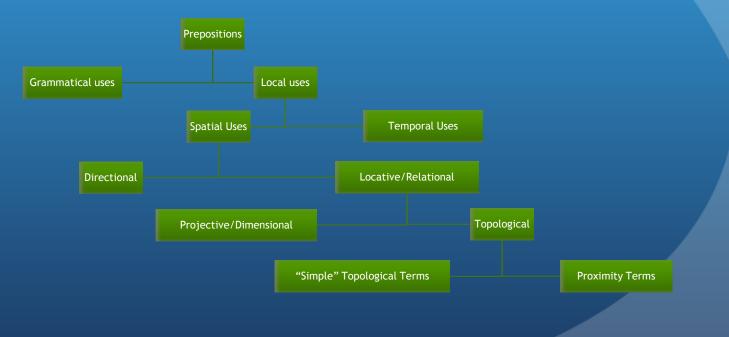
# **Open Street Map**

- The Wikipedia of geospatial information
- User contributed and moderated data
- Roughly 21GB of compressed XML formatted geospatial data
  - Nodes (Points)
  - Ways (Lines and Polygons)
  - Relations (Lines and Polygons)
- On-line search interface (Nominatim) and a Web Service API
- Available as a basemap layer in ArcGIS Desktop
  - All or nothing
  - Cannot search the basemap
- Available on-line at <u>www.openstreetmap.org</u>


# Natural Language Processing

- Natural language It's how humans talk
  - We say: "Where are the Starbucks in Vienna?"
  - We don't say: "Select \* where Name = 'Starbucks' and City = 'Vienna' and State = 'VA'"
- Natural Language Processing
  - Part computer science, part linguistics
  - Goal is to get computers to understand human language
  - Non-trivial problem
    - Reading
      - Noun as in "He gave a reading."
      - Verb as in "I was reading earlier today."
      - Proper noun (place name) as in "Reading, Pennsylvania"

# Natural Language Processing (cont.)

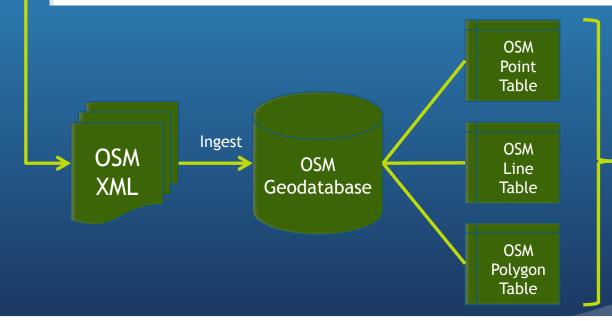

- NLP systems try to understand the linguistic, grammatical and semantic meaning inherent in language
  - Parts of Speech
  - Named Entities
  - Parsing and Tokenization
- Consider the following statements that use the preposition IN:
  - The crack in the jar.
  - The flowers in the vase.
- Systems implementing NLP are all around us we use them daily
  - Spam/junk e-mail filter
  - Calendar events from e-mail messages
  - Internet search
    - How to repair Maytag dishwasher with leaky door?
  - Internet map searches for geographic information
    - Bing Maps Where are the Starbucks in Vienna?

# **On-line Maps and Search**



### Spatial Language and Spatial Representations

- How do we describe where things are in the world?
  - In language, often through the use of spatial prepositions
  - Where are the Starbucks *IN* Vienna?




## **Proposed System Functions**

- Information Retrieval System
  - Ingest spatial data OSM Ingestion Tool
    - Load OSM XML data into a geodatabase
  - Index database Also part of OSM Ingestion Tool
    - Create index of searchable terms using Lucene Search Engine
  - Linguistically analyze query using NLP tools Linguistic Analyzer
    - Part of Speech (POS) Tagger
    - Named Entity Recognition (NER)
    - OSM Special Phrases Dictionary
  - Search data Search Engine
    - Attribute query
    - Spatial query point/polygon and polygon/polygon relationships
  - Present results Handed as Search Engine results
    - Expanded Plug-in window shows hits and allows visualization within ArcGIS Desktop map display

### Ingest OSM into a Spatial Database

#### • OSM Ingestion Tool - ArcGIS Desktop .Net Plug-in



| Field Name | Data Type |
|------------|-----------|
| OBJECTID   | OBJECT ID |
| Shape      | Geometry  |
| NAME       | Text      |
| ТҮРЕ       | Text      |
| GENERIC    | Text      |
| OSMID      | Long      |
|            |           |

# Index Spatial Database with Lucene

- Lucene is an Open Source full-text search library written in Java and .Net
- Uses an inverted index providing fast document retrieval
- Higher performance than traditional database SQL search
- Index is stored on file system and can be searched independent of database

|    |     |                                                             |                  | Token                       | Documents  |
|----|-----|-------------------------------------------------------------|------------------|-----------------------------|------------|
| ID |     | GENERIC                                                     |                  | amenity=cafe                | 1, 2, 3, 6 |
|    | ••• |                                                             |                  | name=Starbucks              | 1,2        |
| 1  |     | name=Starbucks   amenity=cafe   addr:street=Leesburg Pike   |                  | name=Dunkin Donuts          | 2          |
| 2  |     | name=Dunkin Donuts   amenity=cafe                           | Indexer Pipeline | tourism=hotel               | 4          |
| 3  |     | amenity=cafe                                                | >                | name=Homestead              | 4          |
| 4  |     | tourism=hotel   name=Homestead                              |                  | name=Domino Pizza           | 5          |
| 5  |     | amenity=fast_food   name=Domino Pizza                       |                  | amenity=fast_food           | 5          |
| 6  |     | name=Starbucks   amenity=café   addr:street=West Maple Ave. |                  | addr:street=Leesburg Pike   | 1          |
|    |     |                                                             |                  | addr:street=West Maple Ave. | 6          |

#### **OSM** Database Table

Inverted Index

# Linguistically Analyze Query String

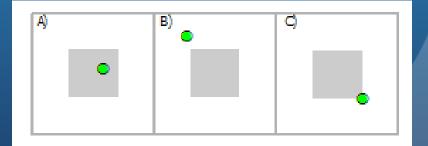
- Linguistic Analyzer ArcGIS Desktop Java plug-in
  - Parse query string (e.g., Starbucks in Vienna)
  - Determine query type: attribute or spatial
    - Spatial preposition IN or ON suggests a spatial query
    - Otherwise, attribute query
  - Determine feature types participating in query
    - Initially limited to points and polygons
  - Identify named entities and parts of speech using Stanford's coreNLP Java library
    - NER Module: Organizations, Locations (e.g., Starbucks, Vienna)
    - POS Module: Prepositions, Nouns (e.g., in, Starbucks, Vienna)
  - Populate Query Object to pass on to the Search Engine

# Linguistic Analyzer (cont.)

• Query string "Starbucks in Vienna"

- POS Tagger: Starbucks/NNP in/IN Vienna/NNP
- NER: Starbucks [ORGANIZATION] in [OTHER] Vienna [LOCATION]
- Located spatial preposition  $IN \rightarrow Spatial Query$
- Tokenize query string into phrases before and after preposition
  - Left side  $\rightarrow$  Starbucks; Search Lucene index for points and polygons
  - Right Side  $\rightarrow$  Vienna; Search Lucene index for polygons (only)
- How to construct the search?
  - Named Entities (Organizations and Locations) are likely stored in a name tag as in name=Starbucks and name=Vienna
  - Unmatched entities are checked against Special Phrase Dictionary

# Linguistic Analyzer (cont.)

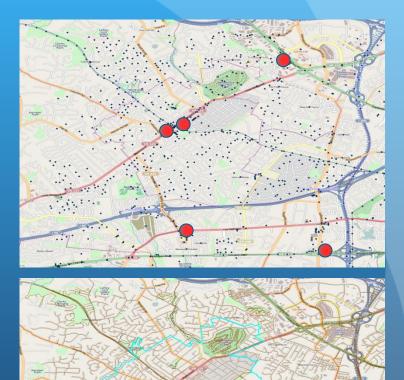

### • Special Phrases Dictionary

- Built using OSM's Nominatim User Contributed Special Phrases
- Maps common OSM tag values to fully expanded search strings
  - cafe  $\rightarrow$  amenity=cafe
  - hotels → amenity=hotel
- Query Object populated with parameters for Search Engine
  - Could be multiple objects depending on index search results

| PARAMETER               | VALUE          |
|-------------------------|----------------|
| QUERY TYPE              | SPATIAL        |
| SPATIAL PREPOSITION     | IN             |
| SOURCE FEATURE CLASS    | POINT          |
| SOURCE SELECTION STRING | Name-Starbucks |
| TARGET FEATURE CLASS    | POLYGON        |
| TARGET SELECTION STRING | Name-Vienna    |

# Search Engine

- Executes Search/Selection of Features based upon:
  - Parameters provided in Query Object
  - For spatial searches, which topological relationship is expressed by the user?
    - Ambiguity in language  $\rightarrow$  What is <u>really</u> meant by IN?
    - True for both point/polygon and polygon/polygon relationships
    - For the "Starbucks in Vienna" example, which figure could it be? Does it matter?
    - If B represents a Starbucks on the outskirts of Vienna, does the user want to see it?
- There is a difference in ArcGIS Desktop spatial relationships for the graphic
  - INTERSECT
  - WITHIN
  - COMPLETELY WITHIN
  - HAVE\_THEIR\_CENTER\_IN




# **Example - Starbucks in Vienna**

• Linguistic Analyzer passes the Query Object to Search Engine

| PARAMETER               | VALUE          |
|-------------------------|----------------|
| QUERY TYPE              | SPATIAL        |
| SPATIAL PREPOSITION     | IN             |
| SOURCE FEATURE CLASS    | POINT          |
| SOURCE SELECTION STRING | Name-Starbucks |
| TARGET FEATURE CLASS    | POLYGON        |
| TARGET SELECTION STRING | Name-Vienna    |

- All Starbucks are selected from the POINTS layer
- Polygon Representing Vienna selected from POLYGON layer



# Example - Starbucks in Vienna

 Topological Relationship represented by Query String with clickable results - Only 2 Starbucks are inside the Boundary polygon for Vienna

| No | Feature   | OSM Key Values                                      |
|----|-----------|-----------------------------------------------------|
| 1  | Starbucks | amenity:cafe   cuisine:coffee_shop   name:Starbucks |
| 2  | Starbucks | amenity:cafe   name:Starbucks                       |



# Next Steps and Follow-on Work

- Build the system!
- Determine where I can present my work
- Expand support for additional Spatial Prepositions and more complex query strings
  - Near need to resolve ambiguity in Near (scale dependency)
  - "Starbucks in Vienna near the airport"
- Expand Query Terms using other NLP Tools and Ontologies
  - Wordnet
- Train NLP Tools on Geographic-term oriented corpora
- Generalize Tool to work with non-OSM data
- Determine how to release code based upon Stanford and OSM Licenses

# References

- OpenStreetMap (2012). Copyright and License. Retrieved from <u>http://www.openstreetmap.org/copyright</u>
- Garrod, S., & Coventry, K. (2004). Saying, Seeing, and Acting: the Psychological Semantics of Spatial Prepositions. Essays in Cognitive Psychology series. Psychology Press.
- The Stanford Natural Language Processing Group (2012). Retrieved from <u>http://nlp.stanford.edu/software/index.shtml</u>
- Alphabetical list of part-of-speech tags used in the Penn Treebank Project (2012). Retrieved from <a href="http://www.ling.upenn.edu/courses/Fall\_2003/ling001/penn\_treebank\_pos.html">http://www.ling.upenn.edu/courses/Fall\_2003/ling001/penn\_treebank\_pos.html</a>
- OpenStreetMap Wiki (2012). Nominatim. Retrieved from <a href="http://wiki.openstreetmap.org/wiki/Nominatim">http://wiki.openstreetmap.org/wiki/Nominatim</a>
- ESRI ArcGIS 10.0 Help: Select by location- graphic examples (2012). ESRI, Redlands, California. Retrieved from <a href="http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#//0017000000tp000000">http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#//0017000000tp000000</a>
- Kowalski, G. (2011). Information Retrieval Architecture and Algorithms. (G. Kowalski, Ed.) Information Retrieval. Springer US. Retrieved from http://www.springerlink.com/content/v0q005/#section=825540&page=1

### Questions?