USING GIS TO IDENTIFY AND CHARACTERIZE HORIZONTAL CURVATURE
 2016 PA GIS C onference

J D Kronicz

PROJ ECTOVERVIEW

- Curves are roadway characteristic sthat a re highly signific ant in terms of highway safety.
- Many state DOTs lack data for many of the curves on their roadways.
- Often, curve data exists on ROW or construction plans. But this is not a form which is useful for conducting highway sa fety a nalysis or other uses.
- This project examined a technique for using GIS roadwa y centerline data for a utomating the process of identifying and characterizing horizontal curves.

ROADWAY CURVES

- Roadway curves are design elements of roadways which serve as transition elements between two straight sections of roadway.
- There are two funda mental types of roadway curves:

- A vertic al curve providesa transition between two sloped roadways, allowing a vehicle to negotiate the elevation rate change at a gradual rate rather than a sharp cut." (2)
- There are two types:
- Sag Curve Change in grade is positive (valley)
- Crest Curve Change in grade is negative (hill)

Horizontal Curves

- "A horizontal curve provides a transition between two tangent strips of roadway, allowing a vehicle to negotiate a tum at a gradual rate rather than a sharp cut." (1)
- There are a number of different categories for horizontal curves:
- Simple
- Spiral
- Compound
- Reverse

HORIZO NTAL CURVATURE AND HIG HWAY SAFETY

The crash rate for horizontal c urves on 2-lane rural roads is $3 X$ higher than on tangent road segments (Glennon et al., 1985)

3/4 of c urve-related fatal crashes involve vehiclesleaving the roadway a nd striking fixed objects or overtuming
(FHWA, 2016)

More than 25 \% of fatalcrashesare associated with a horizontal curve (FHWA, 2016)

HIG HWAY SAFETY

- Improving highway sa fety and reducing fatalities is a key objective for state DOTs
- High risk sectionsor roadway need to be identified a nd proitized. There are two general approaches:
- Crash a nalysis
- Use historic crash data to identify high risk roads
- traditional reactive approach
- Roadway analysis
- Use roadway characteristic salong with safety performance models to identify high risk roads
- Proactive approach
- Once the top priority high risk roads are identified countermeasurescan be implemented to reduce

COUNTERMEASURES

Aimed at Keeping the Vehicle in its Lane

Centerline Rumble Strips

Edge line Rumble Strips

Chevrons

High Friction Surface Treatment

Delineators

COUNTERMEASURES

Aimed at Minimizing the Adverse Consequences of Leaving the Roadway

Removing Roadside Fixed Objects

Crash Attenuation Bamiers

Shoulder Drop Off Elimination

Paving and / orWidening Shoulders

TYPES OF HORIZONTAL CURVES

Simple Curves

- Uniform tuming radius throughout
- Also known as circular arcs

Compound Curves

- Two or more simple curves which are joined and tum in the same direction
- Most often used on interchange loops and ramps

Spiral Curve

- A curve where the radius is continuously getting longer or shorter.
- Spiral curves are generally used to provide a gradual change in curvature from a straight section of road to a curved section.

Reverse Curve

- A reverse curve consists of two simple curves joined together and tuming is opposite directions.

SUPERELEVATION

- A cartraveling around a curve hasa number of forces acting on it:
- Gravity
- Centrifugal Force - Tendency of an object following a curved path to fly a way from the center of curvature.
- Centripetal Force - The force that keeps an object moving with a uniform speed along a circularpath.
- The presence of superelevation on a curve allows some
 of the centripetal force to be countered by the ground, thus allowing the tum to be executed at a fasterrate than would be allowed on a flat surface.

GEOMETRY OF A SIMPLE HORIZONTAL CURVE

Parameters

- PC - Point of Curvature
- PT- Point of Tangency
- PI - Point of Intersection
- Δ - Central Angle or Deflection Angle
- R-Radius
- E - Extemal Distance
- MO - Middle Ordinate
- LC - Cord Length
- L-Curve Length (not labeled)
- Tangent Length

EVOLUTION OF A ROAD

- Many of today's roads were once paths.
- Since these roads were not designed, often there is little or no information about va rious roadway characteristics such as horizontal curves and grade.

ROADWAY PLANS

When these data do exist, they typic ally reside on right of way or construction planswhich can be many decades old.

DATA SOURCESTO IDENTIFY AND CHARAC TERIZE CURVES

Field Surveys

GPS Data

Satellite Imagery

GIS Data

DIGITIZNG PA ROADWAYS

- Original Digitization (1:24,000 Ortho-photography)
- 35,000 person hours spanning 3 years
- Realignment (1:2,000 Ortho-photography)
- 33,000 person hours spanning 13 years
- Annual Maintenance
- 2,000 person hours / year

PENNSYLVANIA'S ROAD NETWORK

PENNSYLVANIA HIGHWAY SYSTEMS	LINEAR MILES	DVMT
TOTAL SYSTEM	120,039	$273,648,047$
Rural	73,918	$98,387,066$
Urban	46,121	$175,260,981$
FEDERAL AID SYSTEM	28,221	$229,268,160$
National Highway System	7,217	$146,755,616$
Interstate System	1,867	$67,904,906$
NON-FEDERAL AID SYSTEM	91,817	$44,379,887$
TOTAL STATE OWNED	41,103	$223,757,168$
PennDOT Owned	39,770	$\mathbf{2 0 5 , 4 6 8 , 5 0 4}$
Pennsylvania Turnpike Commission	554	$16,305,216$
Other PA State Agencies	$\mathbf{7 7 9}$	$1,983,448$
TOTAL NON-STATE OWNED	$\mathbf{7 8 , 9 3 5}$	$49,890,879$
Total Local Municipal Owned	$\mathbf{7 8 , 1 2 0}$	$47,025,412$
Federal Agency Owned	800	$2,035,491$
Toll Bridge/Ferry	15	$\mathbf{8 2 9 , 9 7 6}$

* 2014 Pennsylva nia Highway Statistic s

STATE ROUTES AND SEG MENTS

State Routes

- Are identified by a 4 digit number (e.g. SR 0030).
- State route number are unique within a county.
- 0001-0999 a re traffic routes
- 1000-4999 are fully conta ined within a county
- A route can be divided into a ny number of segments

Segments

- Segments are continuous sections of roadway which are typic ally about a half mile in length.
- Segments increase in a north oreast bound direction typic ally in inc rements of 10
- Divided highways have segments in both directions. In the north or eastbound direction the segment number is even and in the opposite direction it is odd.
- The position along a segment is designated as an offset typic ally specified in feet.

PENNDOTSLRS

Every position on a Pennsylvania roadway can be identified with an LRS Key.

01400900400348
 त्र $\stackrel{\rightharpoonup}{5}$ 0
 Route

 $\overleftrightarrow{\psi}$ $\underset{\sim}{4}$ 0

UNEAR REFERENC ING SYSTEM (LRS)

- A system of spatial referencing where objects (e.g., signs, guiderail), occurrences (e.g., crashes) or attributes (e.g., speed limit, traffic volume, pavement type) are located in terms of measurements along a linear feature.
- Collectively, these objects, occurrences and attributes are referred to as events.
- An LRS is used in linearnetworks such as roads, railways, waterways, oil and gaspipelines and power and data transmission lines.
- Dynamic segmentation is a powerful process made possible through the implementation of an LRS.

NETWO RK LINEAR FEATURE (NLF)

A null segment is used to represent a discontinuity, or intemuption, in a road alignment.

The nomal order of precedence is Interstates, followed by U.S. Traffic Routes, then PA Traffic Routes, a nd finally, other state routes. Within each of these categories, generally the lower numbered route takes precedence

APPROACH

The Hapry Path

Seo 1 Deconstruct the roadway feature into 2-vertice linear sections and foreach section determine its bearing angle with respect to due east $\left(\Phi_{B}\right)$.

APPROACH

The Hapry Path

Step 2

A. For each section (n), calculate the difference in the bearing angle for the section $\left(\Phi_{\mathrm{B}(\mathrm{n})}\right)$ in comparison to the bearing angle for the prorsection $\left(\Phi_{\mathrm{B}(n-1)}\right)$ and the bearing angle for the next section $\left(\Phi_{\mathrm{B}(n+1)}\right)$.
B_{1} If the changes in bearing angle $\left(\Phi_{P}\right.$ and $\left.\Phi_{N}\right)$ both exceed a threshold value $\left(\Phi_{T}\right)$, flag the section as being part of a curve and indicate the direction of change.

APPROACH

The Hapoy Path

Pass through the a rray and construct curve features from

Step 3

 consecutive curve sections aggregating the changes in bearing angle to yield the central angle (Δ) and aggregating the length of the sections to determine curve length a nd NLF offsets for the start of the curve and the end of the curve.

AUTOMATING THE APPROACH

A custom Python toolbox in Arc GIS was developed which uses roadway centerline data to identify and characterize horizontal curves.

Catalog	$\square \times$
Location: HighwaySafety.pyt	\checkmark

CURVE DETECTIVE INTERFACE

- Curve Detective was written in Python.
- It can be added to ArcGIS as a custom tool.
- If an SR is not specified, the entire county will be processed.
- If a county isn't specified, the entire state will be processed.

TOOL OUTPUT

The tool output is a horizontal curve feature class with the following attributes:

- Central Angle
- Radius
- Curve Length
- Direction of tum
- NLF ID
- NLF Begin Offset
- NLF End Offset

STATEWIDE ANALYSIS

CUMBERLAND COUNTY SR 0944 : SEG MENT 140

CUMBERLAND COUNTY SR 0944 : SEG MENT 440

VALIDATION OF RESULTS

- Curve data was manually extracted from ROW a nd Construction plans. Some challenges in doing this:
- Finding plans with curvature information
- Translating legislative route designationsto State Route designations
- Detemining segment - offset from project stationing designationsused on drawings
- Central angle, length and radius values were compared to the output of Curve Detector.
- Total number of curves compared was 35

Characteristic s of Selected Curves

Parameter	Range
Central Angle	$8^{\circ}-102^{\circ}$
Length	$114 \mathrm{ft}-1124 \mathrm{ft}$
Radius	$180 \mathrm{ft}-2953 \mathrm{ft}$

VALDATION OF RESULTS

Parameter	Avg \% Difierence (\%D)	SD	Histogram
Central Angle	-1\%	6\%	
Length	2\%	26\%	
Radius	-3\%	25\%	

CURVE SPANNING SEGMENT BOUNDARIES

POTENTIAL SOURC ES OF ERROR

- Identification of PC and PT
- Cord Length vs. Arc Length
- Spacing of Vertic es
- Inaccuracies in Centerline Data

Parameter	Construction Drawing	Curve Detective
Central Angle	45.61°	46.95°
Length	480^{\prime}	363^{\prime}
Radius	603^{\prime}	443^{\prime}

SPUTCURVES

Adams County SR 4008 Segment 0020-0030

Cumberland County SR 0977 Segment 0110-0120

SUBJ ECTIVE DEC ISIONS

1929 C onstruction Drawing

CRASH ANALYSIS

Crash Data

- 2010-2014 (5 Years)
- 44,546 miles of roadway
- 449,081 crashes
- 5,224 fatalities
- 12,786 major injuries
- 49,567 moderate injuries
- 161,268 minor injuries
- 384 billion vehic le miles traveled

CRASH RATES

Crash rates a re typic ally reported as crashes per million vehic le miles traveled.

$R=\frac{C \times 100,000,000}{V \times 365 \times N \times L}$

R - Crash rate (crashes per million vehicle miles)
C - Total number of crashes
V - Traffic volume (AADT)
N - Number of years of data
L- Length of roadway in miles

CURVE CRASH RATE ANALYZER

CRASH RATES ANALYSIS 1

Analytic al Parameters:

- Roadway Type: 2 Lane Rural Roads
- Region: Statewide
- Crash Data Period: 2010-2014
- Injury types: All
- Road condition types: All
- Drivertypes: All
- Collision types: All
- Curve Central Angle: $\geq 10^{\circ}$

Alignment	Curve	Straight
Vehicle Miles (billions)	17.3	116.1
Crashes	31,560	90,622
Crash Rate	1.8262	0.7804

- Curve Radius: $\leq 2000^{\prime}$

Finding: Crash Rate on curves is 2.34 times the crash rate on roadway with a straight a lignment.

CRASH RATES ANALYSIS 2

Fatal Crash Rates

Analytical Pa ra meters:

- Roadway Type: 2 La ne Rural Roads
- Region: Statewide
- Crash Data Period: 2010-2014
- Injury types: Fatal
- Road condition types: All
- Drivertypes: All
- Collision types: All
- Curve Central Angle: $\geq 10^{\circ}$

Alignment	Curve	Straight
Vehicle Miles (billions)	17.3	116.1
Fatal Crashes	1,899	4,516
Crash Rate	0.1099	0.0389

- Curve Radius: ≤ 2000

Finding: Fatal crash rate on curves is 2.83 times the crash rate on roadway with a straight a lignment.

Conclusion: Not only are crashes more likely to occur on curves, crashes on curves a re more likely to result in fata lities.

CRASH RATES ANALYSIS 3

Crash Rates for Older Drivers

Analytical Parameters:

- Roadway Type: 2 La ne Rural Roads
- Region: Statewide
- Crash Data Period: 2010-2014
- Injury types: All
- Road condition types: All
- Drivertypes: 75+
- Collision types: All
- Curve Central Angle: $\geq 10^{\circ}$

Alignment	Curve	Straight
Vehicle Miles (billions)	17.3	116.1
Crashes (Driver 75+)	1,236	4,792
Crash Rate	0.0715	0.0413

- Curve Radius: ≤ 2000

Finding: For drivers over 75 , the crash rate on curves is 1.73 timesthe crash rate on roadway with a straight a lig nment.

Conclusion: While the crash rate fordrivers over 75 increases on curves it doesn't inc rease as much as it does for all drivers.

CRASH RATES ANALYSIS 4

Slippery Conditions

Analytical Pa ra meters:

- Roadway Type: 2 La ne Rural Roads
- Region: Statewide
- Crash Data Period: 2010-2014
- Injury types: All
- Road condition types: Wet / Snow / Ice
- Drivertypes: All
- Collision types: All
- Curve Central Angle: $\geq 10^{\circ}$

Alignment	Curve	Straight
Vehicle Miles (billions)	17.3	116.1
Crashes (Slippery Conditions)	11,959	29,366
Crash Rate	0.6920	0.2529

- Curve Radius: ≤ 2000

Finding: In wet or slippery conditions, the crash rate on curves is 2.73 times the rate on straight roadway a lignments. By comparison, in dry conditions the curve crash rate is 2.13 times the rate on straight road wa y a lignments.

C onc lusion: In wet or slippery conditions, the risk of a crash a long curved a lig nments inc reases more than it does a long straight a lignments.

CRASH RATES ANALYSIS 5

Run Off Road Crashes

Analytical Pa ra meters:

- Roadway Type: 2 La ne Rural Roads
- Region: Statewide
- Crash Data Period: 2010-2014
- Injury types: All
- Road condition types: All
- Drivertypes: All
- Collision types: Run Off Road
- Curve Central Angle: $\geq 10^{\circ}$
- Curve Radius: $\leq 200{ }^{\prime}$

Alignment	Curve	Straight
Vehicle Miles (billions)	17.3	116.1
Run Off Road Crashes	22,265	47,871
Percentage of Total	71%	53%

Finding: A substantially higher percenta ge of crashes on c urves are due to the vehicle leaving the road than on straight roadway alignments.

CRASH RATES ANALYSIS 6
 Head On Collisions

Analytical Pa rameters:

- Roadway Type: 2 La ne Rural Roads
- Region: Statewide
- Crash Data Period: 2010-2014
- Injury types: All
- Road condition types: All
- Drivertypes: All
- Collision types: Head On Collisions
- Curve Central Angle: $\geq 10^{\circ}$

Alignment	Curve	Straight
Vehicle Miles (billions)	17.3	116.1
Head On Crashes	1,134	2,485
Percentage of Total	3.6%	2.7%

- Curve Radius: ≤ 2000

Finding: A higher percentage of crashes on curves are due to head on collisions than on straight roadway a lignments.

CRASH RATE VS. RADIUS

POTENTIAL REFINEMENTS

- Adjustments to the algorithms to further minimize the occurrence of split curves.
- Extrapolate pre and post curve tangents to identify the PI and improve the estimate of the PC and PT.
- Develop a standard format of roadway centerline data as an input to the tool so that it could be more readily used by other state DOTs.

CONCLUSIONS

- Extracting roadway horizontal curve data from roadway centerlines is very rapid and cost effective.
- The methodology can be applied to both state and local roadways since PennDOT hascenterline data for both. GPS data is not available for local roads.
- Comparisons with survey data is quite accurate. The average \%D for the central a ngle and radius were 1% and -3% respectively.
- The standard deviation of the $\%$ was wor for central angle and 25% for the radius.
- An a nalysis of crash rates indic a ted:
- Crash rates increase substantially as the radius dec reases below 2000 feet.
- Roadway departure crashes are much more common on curves (71% vs. 53%)
- Crashes on curves are more likely to result in fatalities.
- Slippery conditions inc rease the risks on curves more than on straight roadway a lignments.

SPECIAL THANKS

- Beth King
- Eric Donnell
- Doug Brown
- Gary Modi
- J eff Roecker
- Bob Raneri
- Frank Desendi
- Jason Hershock
- Gavin Gray

QUESTIONS

