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1. Introduction 

 

The Urban Heat Island effect (UHI) is a phenomenon where cities and metropolitan areas, on average, 

experience higher land and surface air temperatures compared to their surrounding rural areas (1). 

According to the U.S. Environmental Protection Agency (EPA), urban heat islands exhibit daytime 

temperatures between 1 and 7 degrees Fahrenheit warmer, while nighttime temperatures are 2 to 5 

degrees warmer in the city than in their surrounding areas (2). Despite growing recognition of UHI 

significance, our understanding of its spatial and temporal dynamics across different cities remains 

limited. Existing research has primarily focused on individual cities or regions, often overlooking the 

broader regional variability of UHI intensity and its underlying drivers. To address these gaps in 

knowledge, this project seeks to investigate the regional variability of UHI intensity across different cities 

in the U.S. For this project, UHI intensity is characterized by increased surface air temperatures, land 

temperatures, or temperature anomalies. The purpose is to identify and quantify the key variables 

associated with UHI intensity and assess how these variables vary spatially and temporally within cities in 

the U.S using regression analyses.   

 

 

2. Literature Review 

 

UHI is a large environmental and human health issue as the impacts of a warming city results in increased 

energy consumption, elevated emissions of air pollution, increased instances of heat-related illnesses and 

death, and impaired water quality (2). It is essential to understand the current variables and indicators 

associated with this phenomenon. While delving into the literature, the following variables were notably 

associated with UHI intensity: impervious surfaces, vegetation, demography, and climate.  

 

Impervious Surfaces 
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One frequented indicator of UHI is the percentage of impervious surfaces within a city (3). Impervious 

surfaces consist of pavements, roads, and other indications of human settlements. There is strong 

evidence that impervious surfaces impact the surrounding environment (2, 3, 5, 6). Studies have shown 

that impervious surfaces increase UHI intensity by trapping heat within a city, blunting evaporative 

cooling, and reducing albedo (5, 6, 7). In addition to increasing urban heat intensity, impervious surfaces 

degrade their surrounding environment by increasing stormwater run-off, minimizing ground-water 

recharge, and reducing greenspace (2, 4). Shi et al. (2023) and Hua et al. (2020) suggested that using 

impervious surface area, as a proxy for urbanization, is a reasonably effective method for predicting and 

understanding the spatial and temporal patterns of UHI at a global scale (3, 5). This is also further 

supported by mitigation strategies that target these surfaces. Multiple studies found that modifying such 

surfaces yield significant results in reducing urban heat through energy dissipation or reflection (2, 7, 8, 9, 

10).  

 

Vegetation 

 

Another extensively researched variable associated with UHI is vegetative coverage. Terms such as 

vegetation or green space refer to land composed of natural elements and plant cover. A systematic 

review investigating the impact of vegetative coverage on urban areas concluded that they have a cooling 

effect, with the caveat that the effectiveness of vegetation can vary based on characteristics such as tree 

species, distribution, and overall urban design (11). The review also indicated that vegetation reduced 

surface air temperature through actions such as reflection of UV radiation, evapotranspiration by plants, 

diminished heat absorption, and filtration of atmospheric pollutants, including greenhouse gases (11). 

Canopy coverage stood out as a key influencer on urban heat intensity due to its role in providing shade 

and reflecting solar radiation (11). 
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Beyond the previously mentioned systematic review, consistent findings across different research also 

support these claims (2, 7, 11, 12). However, it seems there are more studies examining the cooling effect 

of vegetation than it being a good indicator of UHIs. One study estimated that a 10% increase in 

vegetative cover can potentially lead to a 7% reduction in heat-related deaths in Washington, D.C. (12). 

The Environmental Protection Agency also recognizes this impact and documents canopy coverage as an 

effective strategy to reduce urban heat islands (2). Based on previous research, vegetation stands as a key 

variable associated with UHIs, warranting its inclusion in the analytical framework of this project. 

 

Demography 
 
 
Multiple studies examining the relationship between demographic factors and urban heat islands (UHI) 

provided evidence of thermal disparities. The overall findings include the significant correlation of 

population-related parameters, such as city size, population density, race, and income, on UHI intensities. 

Recent literature showcased the role of population density and size, in determining temperature variations 

within the city (13). This aligns with previous studies that emphasized the interaction between UHI 

intensity and city size (1, 14). This overarching trend suggests that both larger and denser cities tend to 

exhibit heightened urban heat intensity. 

 

Other demographic studies reveal an unsettling trend across various U.S. cities. Nation-wide research 

reported that communities of color and low-income are positively correlated with increased UHI intensity 

(15, 16). Moreover, Saverino et al. (2021) study in Richmond, VA, adds a historical dimension to the 

narrative, providing evidence for past discriminatory practices in urban development contributing to the 

present spatial distribution of extreme heat (17). There is a clear association between UHI intensity and 

communities facing socio-economic challenges. Incorporating demographic variables into the regression 

analysis can reveal socio-economic influences on UHI intensity, aiding in identifying vulnerable 

populations and guiding targeted mitigation strategies. 
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Climate 

 

Finally, research has also demonstrated the influence of climate types and weather on UHI intensity. 

According to research, factors like precipitation, humidity, and spatial/temporal patterns significantly 

affect urban heat (18, 19, 20, 21). Two studies specifically discuss the impact of precipitation on heat 

retention within a city (18, 21). Chen & Wang (1995) noted that while rain can slow daytime temperature 

rises, it also reduces nighttime cooling (18). Similarly, Yang et al. (2019) found that prolonged daytime 

precipitation in general leads to lower urban heat (21). 

 

Moreover, other studies highlight the spatial and temporal drivers of UHI across various cities, revealing 

that geographic location does have a significant impact on UHI (19, 22). Varquez & Kanda (2018) found 

that cities within a drier climate regime, as categorized by the Köppen -Geiger climate sub-classes, have a 

higher nighttime UHI, while tropical cities had the lowest UHI (22). These global findings suggest that 

similar dynamics may occur in urban areas of the U.S., warranting further investigation into how climate 

factors influence heat intensity in different U.S. cities. 

 

3. Data 

This project will address the question of if impervious surfaces, tree canopy coverage, median income, 

and population density are associated with UHI intensity in selected cities across the U.S. The project will 

also address if these variables play a larger or smaller role in determining UHI intensity. To investigate 

this question, the following data and methods will be used:  

 

NOAA Urban Heat Mapping Campaign  

 

The National Oceanic and Atmospheric Administration's (NOAA) Urban Heat Mapping Campaign will 

be used for the majority of the data (23). This is an ongoing nationwide dataset that contains surface air 

https://www.arcgis.com/home/item.html?id=777502ece2b343f7b3ec54170f0d972e
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temperature readings (°F) coupled with Sentinel-2 satellite data across well-known cities in the United 

States. Temperature readings for this dataset were collected via volunteers using car and bike-mounted 

sensors over the summer months for the last four years. Surface air temperature recordings were collected 

in the morning (6 a.m.), afternoon (3 p.m.), and evening (7 p.m.) on a single day. Dataset variables for 

each city include temperature and temperature anomalies, impervious surface percentage, canopy 

coverage percentage, and various demographics data (i.e., total population, population <5, population 

>65, minority, median income, and poverty) for each neighborhood. Temperature anomalies are defined 

as neighborhood temperature compared to the citywide average based on the Climate Adaptation 

Planning and Analytics (CAPA) data. CAPA is a NOAA funded initiative aimed at climate-focused data 

analytics.  

 

City Selection 

 

Additionally, cities selected for statistical analyses were chosen considering their climate type. This 

approach is justified by the well-established literature on the significant impact of climate on UHIs (18, 

19, 20, 21). As highlighted in the literature review, climatic conditions play a crucial role in shaping the 

intensity and characteristics of UHI. The classification of climate type adhered to the Köppen-Geiger 

climate classification system, which provides an overview based on temperature and precipitation patterns 

(24). Cities were selected based on a variety of climate types available within the U.S., such that the 

model can provide predictions across different environmental contexts. Four cities were selected: 1) 

District of Columbia, 2) Detroit, Michigan, 3) El Paso, Texas, and 4) Miami, Florida. These four cities 

were selected to represent the climate types of C - Temperate, D - Continental, B – Arid, and A – 

Tropical, respectively. At the time of this project, only a handful of cities were mapped in NOAA’s Urban 

Heat Mapping dataset. Therefore, the final selection of cities was chosen based on meeting the criteria of 

1) having a diverse range of climate types and 2) having a sample size of at least 30.   
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4. Methodology 

Statistical Analyses 

 

To create a comprehensive model for Urban Heat Islands, a regression analysis was used. To determine a 

model fit, each city dataset went through a series of exploratory data analyses. These include normality 

tests on the data and the OLS residuals. Outliers were removed and transformations were performed in 

attempts to normalize each dataset. Outliers were detected using the Interquartile Range (IQR), where 

observations outside of the lower and upper bounds were removed. Any non-normal datasets were 

transformed based on skewness. For data with skewness greater than 1, a log transformation was applied 

with a small constant added to handle zero values. For data with skewness less than -1, an exponential 

transformation was applied. For data with skewness between -1 and 1 and containing negative values, a 

cube root transformation was applied. For data with skewness between -1 and 1 and containing only 

positive values, a square root transformation was applied. After, a spatial autocorrelation test was 

performed to check for clustering in the OLS residuals of each variable. Spatial weights were calculated 

using the K-Nearest Neighbor (KNN) algorithm due to its basis in a distance metric. The number of 

neighbors (k) was calculated using the formula: k = √(N)/2, where N represents the sample size [25].  

 

If clustering was present, a Spatial Error Regression (SER) model or a Spatial Lag Regression (SLR) 

model was used. In the analysis, four predictor variables were utilized across the four chosen U.S. cities. 

The predictor variables for the analysis include: 1) Impervious Surface Percentage, 2) Canopy Coverage 

Percentage, 3) Total Population Density, and 4) Median Income. These four variables represent heat-

absorbing urban surfaces, vegetative land cover, city size, and socio-economic status. The dependent 

variable for this analysis is UHI intensity, represented by afternoon temperature anomalies. Afternoon 

temperature anomalies consist of neighborhood temperatures (°F) during peak heating hours relative to 

the citywide average. These variables were chosen to represent UHI factors as outlined by NOAA and the 

EPA (23, 26). Python was used to carry out the regression analyses. Python packages and modules used 
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include SciPy, ArcPy, spreg, numpy, and pandas. Model summary and static maps will be used to 

communicate the results of the projects. All maps were created using ArcGIS Pro and Esri’s World 

Imagery basemap (27). 

 

5. Results 

 

Normality Tests and Data Transformations 

 

Exploratory Data Analysis (EDA) was used to identify which regression modeling approach yielded 

better outcomes for predicting afternoon temperature anomalies. A Shapiro-Wilks Normality test was 

performed on individual datasets from each city to assess its distribution. The test was performed on the 

raw data, after removal of outliers, and after applying transformations. A normally distributed dataset 

would align with one of the assumptions of an Ordinary Least Squares model, while a non-normally 

distributed dataset violates the assumptions of OLS. For this analysis, p-values > 0.05 fails to reject the 

null hypothesis of a normally distributed data. The final selection of datasets was based on those yielding 

the highest resulting p-values. There were some cases where the transformation led to lower p-values. In 

those instances, the datasets with only the outliers removed were used. Outliers were removed for each 

dataset even when the raw datasets were normally distributed.  

 

Some variables did have p-values > 0.05, but none of the four cities had all five variables normally 

distributed after outliers were removed and/or transformations were applied.  
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District of Columbia 

Variable Name Raw data p-value Final data p-value 
 

Afternoon Temperature Anomalies 0.065* 0.208* 
Median Income 0.001 0.001 
Tree Canopy  2.473e-15 2.412e-13 
Impervious Surfaces 0.002 0.000 
 Population Density 1.31e-08 0.277* 

Detroit 

Variable Name Raw data p-value Final data p-value 
 

Afternoon Temperature 
Anomalies 

0.017 0.017 

Median Income 5.828e-17 0.506* 
Tree Canopy  7.148e-20 0.468* 
Impervious Surfaces 0.000 0.147* 
Population Density 3.011e-07 0.018 

El Paso 

Variable Name Raw data p-value Final data p-value 
Afternoon Temperature 
Anomalies 

1.874e-11 0.066* 

Median Income 0.006 0.107* 
Tree Canopy  1.488e-21 1.675e-08 
Impervious Surfaces 0.007 0.298* 
Population Density 0.360* 0.820* 

Miami 

Variable Name Raw data p-value Final data p-value 
 

Afternoon Temperature 
Anomalies 

1.812e-06 0.071* 

Median Income 4.916e-09 0.083* 
Tree Canopy  9.628e-14 0.473* 
Impervious Surfaces 0.035 0.092* 
Population Density 7.029e-11 0.015 

Table 1: Shapiro-Wilks Normality Test Results: 
 
* Indicates a normally distributed dataset 
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Exploratory Data Analysis 

 

Both visual and analytical methods were used to determine Ordinary Least Squares (OLS) overall fit of 

the regression line for each city.  An example of a visual method is included below (Figure 1, 2). The 

scatter plots were used in conjunction with their R-squared values to determine linearity. R-squared 

values closer to 1.0 indicate a strong linear relationship. Furthermore, the residuals of each city were 

plotted and tested for normality. Randomness in the residual plots can be indicative of error term 

normality (homoscedasticity), while non-random patterns can be indicative of a mean error other than 0 

(heteroscedasticity). The Shapiro-Wilks Normality test (Table 2) was employed on the residuals to 

provide a clear indication of normality. P-values > 0.05 failed to reject the null hypothesis of a normal 

distribution while p-values ≤ 0.05 is statistically significant in rejecting the null hypothesis of a normal 

distribution. 
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Figure 1. Scatter plot for the District of Columbia: Scatter plots showing the dependent variable (Afternoon 
Temperature Anomalies) against the independent variables (Median Income, Tree Canopy, Impervious Surfaces, and 
Population Density). The R-squared values and the line of best fit are included at the top to indicate the strength of 
linearity. 
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District of Columbia 

Variable Name R-Squared Residuals (p-values) 

Median Income 0.010 0.545* 
Tree Canopy  0.525 0.000 
Impervious 
Surfaces 

0.363 5.940e-07 

Population Density 0.106 0.156* 

Detroit 

Variable Name R-Squared Residuals (p-values) 

Median Income 0.012 0.010 
Tree Canopy  0.046 0.005 
Impervious 
Surfaces 

0.081 0.002 

Population Density 0.030 0.034 

Table 2. Normality Test on the Residuals:  
 
* Indicates a normally distributed dataset 
 

Figure 2. Residual plots for the District of Columbia: Residual plots showing the error terms against Median Income and 
Tree Canopy. The residual plot for Median Income (left) shows a normally distributed error variance. The residual plot for Tree 
Canopy (right) shows a cone-shaped pattern, indicative of heteroscedasticity.  
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Based on the R-Squared values, none of the cities had a strong degree of linear correlation. Tree 

Canopy % in the District of Columbia had the strongest linear relationship (0.535) compared to the 

remaining predictor variables.  

 

In terms of looking at the residual plots, D.C. had two out of four variable residuals normally distributed, 

while Detroit had no variable residuals normally distributed. The city of El Paso had all four predictor 

variable residuals normally distributed, and Miami had three out of four variable residuals normally 

distributed. 

 

Finally, a Spatial Autocorrelation test with performed on the regression model’s residuals of each city. 

Spatial Autocorrelation test analyzes if there is spatial clustering within the data. A p-value < 0.05 

indicates that there is significant clustering present within the data. The Moran’s I provide insight into the 

direction of clustering. A positive Moran’s I suggest that neighboring observations tend to have similar 

El Paso 

Variable Name R-Squared Residuals (p-values) 

Median Income 0.020 0.119* 
Tree Canopy  0.006 0.107* 
Impervious 
Surfaces 

0.003 0.062* 

Population Density 0.001 0.056* 

Miami 

Variable Name R-Squared Residuals (p-values) 

Median Income 0.080 0.060* 
Tree Canopy  0.011 0.041 
Impervious 
Surfaces 

0.016 0.192* 

Population Density 0.046 0.107* 
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residual values, indicating spatial autocorrelation, while a negative Moran’s I implies dissimilarity among 

neighboring residuals. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
  
 
 
 
 

District of Columbia 

Variable Name Moran’s I p-values 

Median Income 0.611 0.000* 
Tree Canopy  0.527 0.000* 
Impervious 
Surfaces 

0.638 0.000* 

Population Density 0.631 0.000* 

Detroit 

Variable Name Moran’s I p-values 

Median Income 0.606 0.000* 
Tree Canopy  0.640 0.000* 
Impervious 
Surfaces 

0.659 0.000* 

Population Density 0.585 0.000* 

El Paso 

Variable Name Moran’s I p-values 

Median Income 0.357 0.000* 
Tree Canopy  0.314 0.000* 
Impervious 
Surfaces 

0.342 0.000* 

Population Density 0.329 0.000* 

Miami 

Variable Name Moran’s I p-values 

Median Income 0.745 0.000* 
Tree Canopy  0.733 0.000* 
Impervious 
Surfaces 

0.716 0.000* 

Table 3. Spatial Autocorrelation Test Results: 
 
* Indicates significant Moran’s I 
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All four cities had highly significantly positive spatial autocorrelation present. El Paso had the least 

positive Moran’s index (0.314 - 0.357), while Miami had the highest positive Moran’s index (0.719 – 

0.749).  

 

For D.C., Impervious Surface had the most positive Moran’s index (0.638), and Tree Canopy had the 

least positive Moran’s index (0.527). For Detroit, Impervious Surface had the most positive Moran’s 

index (0.659) while Population Density had the least positive Moran’s index (0.585). For El Paso, Median 

Income had the most positive Moran’s index (0.357), while Tree Canopy had the least positive Moran’s 

index (0.314).  Finally, for Miami, Population Density had the most positive Moran’s index (0.749), while 

Impervious Surfaces had the least positive Moran’s index (0.716).  

 

Exploratory Data Analysis Conclusions 

Since each regression model exhibited spatial autocorrelation in the residuals, the OLS model may not be 

the best fit for the data. The presence of highly positive spatial autocorrelation in the residuals, violates 

the assumption of independent errors. The R-squared values for each city were also relatively low, 

indicating that predictors in the model are not explaining a large portion of the variance in Afternoon 

Temperature Anomalies. Due to the presence of highly significant spatial autocorrelation, a SER or a SLR 

model may be more suitable. Both models account for spatial autocorrelation, but in different ways. A 

SER accounts for spatial dependence in the model by modeling spatial autocorrelation in the residuals. On 

the other hand, SLR addresses spatial autocorrelation in the dependent variable.  

 

Model Comparisons 

Population Density 0.749 0.000* 
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Based on the EDA, a SER and a SLR was performed on each city. A comparison of the OLS, SER, and 

SLR models for each city are shown below. Significant Correlation Coefficients are indicated by a p-

value ≤ 0.05 and are denoted by an asterisk (*). Two indicators of model fit were included: Akaike 

information criterion (AIC) and Log likeliness. Both provide a measure of goodness of fit; however, AIC 

considers model complexity. The AIC value will be used as the main metric of model fit in the 

comparison. As AIC and log likeliness values move closer to 0, a better model fit is concluded. The 

lambda value reports similar metrics as Moran’s I where lambda reports the direction of spatial 

autocorrelation. Positive lambda values suggest that closer values are more similar, whereas negative 

lambda values indicate that closer values are less similar. P-values ≤ 0.05 indicate significant spatial 

autocorrelation in the residuals. Similarly, the spatially lagged dependent variable (Wy) captures how the 

dependent variable of a particular observation is influenced by its own independent variables and by the 

values of the dependent variable in neighboring observations based on the spatial weight matrix. The 

KNN weighs neighboring observations higher compared to observations that are further away.  

 
With OLS, R-squared values are used to determine how much of the variation are in the dependent 

variable is accounted for by the predictor variables. Pseudo R-squared values are reported as diagnostics 

for the spatial error and spatial lag models where traditional R-squared values cannot be calculated. 

Pseudo R-squared values should be limited to comparisons between the same models, as they can be 

affected by model complexity. Finally, Spatial Pseudo R-squared values are like traditional R-squared 

values, but they are adapted to account for spatial dependence in the data.  
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Spatial Lag Regression Model  

Variable Name Coefficient p-value 
Median Income -0.000 0.862 
Tree Canopy  -0.058 0.000* 
Impervious Surfaces -0.001 0.934 
Population Density 3.083 0.318 
Wy 0.606 0.000* 
AIC** 322.950 
Log likelihood -155.475 
Pseudo R-squared 0.734 
Spatial Pseudo R-squared 0.539 

Spatial Error Regression Model  

Variable Name Coefficient p-value 
Median Income 0.000 0.968 
Tree Canopy  -0.051 0.000* 
Impervious 
Surfaces 

0.021 0.003* 

Population Density -0.466 0.890 
lambda 0.773 0.000* 
AIC** 305.656 
Log likelihood -147.828 
Pseudo R-squared 0.495 

Ordinary Least Squares Model  

Variable Name Coefficient p-value R-squared AIC** Log 
likelihood 

Median Income 2.66e-06 0.194 0.010 518.1 -257.05 
Tree Canopy  -0.051 0.000* 0.525 398.6 -197.30 
Impervious 
Surfaces 

0.021 0.000* 0.363 446.4 -221.18 

Population Density -0.466 0.000* 0.106 501.6 -248.79 

Table 4. Model Summary for District of Columbia: 
 
* Indicates significant Correlation Coefficients 
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Ordinary Least Squares Model  

Variable Name Coefficient p-value R-squared AIC** Log 
likelihood 

Median Income 5.005e-06 0.109 0.012 173.8 -84.903 
Tree Canopy  -0.112 0.002* 0.046 166.3 -81.131 
Impervious 
Surfaces 

0.015 0.000* 0.081 158.2 -77.112 

Population Density 7.316 0.012* 0.030 169.9 -82.975 

Spatial Error Regression Model  

Variable Name Coefficient p-value 
Median Income -0.000 0.332 
Tree Canopy  -0.048 0.149 
Impervious 
Surfaces 

0.013 0.000* 

Population Density 1.3634 0.488 
lambda 0.850 0.000* 
AIC** -29.229 
Log likelihood 19.614 
Pseudo R-squared 0.081 

Spatial Lag Regression Model  

Variable Name Coefficient p-value 
Median Income -0.000 0.998 
Tree Canopy  0.006 0.840 
Impervious Surfaces 0.013 0.000* 
Population Density 1.823 0.309 
Wy 0.822 0.000* 
AIC** -18.826 
Log likelihood 15.413 
Pseudo R-squared 0.6719 
Spatial Pseudo R-squared 0.0831 

Table 5. Model Summary for Detroit: 
 
* Indicates significant Correlation Coefficients 
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Ordinary Least Squares Model  

Variable Name Coefficient p-value R-squared AIC** Log 
likelihood 

Median Income -0.001 0.192 0.020 44.43 -20.215  
Tree Canopy  0.026 0.484 0.006 45.68 -20.841 
Impervious 
Surfaces 

0.002 0.613 0.003 45.92 -20.961 

Population Density 18.993 0.765 0.001 46.09 -21.047 

Spatial Error Regression Model  

Variable Name Coefficient p-value 
Median Income -0.003 0.005* 
Tree Canopy  0.060 0.069 
Impervious 
Surfaces 

0.014 0.002* 

Population Density 76.674 0.188 
lambda 0.698 0.000* 
AIC** 15.598 
Log likelihood -2.799 
Pseudo R-squared 0.030 

Spatial Lag Regression Model  

Variable Name Coefficient p-value 
Median Income -0.002 0.027* 
Tree Canopy  0.042 0.213 
Impervious Surfaces 0.007 0.040* 
Population Density 78.112 0.175 
Wy 0.648 0.000* 
AIC** 25.829 
Log likelihood -6.915 
Pseudo R-squared 0.381 
Spatial Pseudo R-squared 0.000 

Table 6. Model Summary for El Paso: 
 
* Indicates significant Correlation Coefficients 
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Ordinary Least Squares Model  

Variable Name Coefficient p-value R-squared AIC** Log 
likelihood 

Median Income -1.087 0.012* 0.080 171.5 -83.773 
Tree Canopy  0.130 0.347 0.011 177.2 -86.596 
Impervious 
Surfaces 

-0.150 0.267 0.016 176.8 -86.417 

Population Density -0.786 0.058 0.046 174.4 -85.200 

Spatial Error Regression Model 

Variable Name Coefficient p-value 
Median Income -0.200 0.467 
Tree Canopy  -0.076 0.507 
Impervious 
Surfaces 

0.227 0.054* 

Population Density -0.397 0.073 
lambda 0.887 0.000* 
AIC** 77.027 
Log likelihood -33.514 
Pseudo R-squared 0.001 

Spatial Lag Regression Model  

Variable Name Coefficient p-value 
Median Income -0.260 0.245 
Tree Canopy  -0.102 0.380 
Impervious Surfaces 0.051 0.648 
Population Density -0.316 0.151 
Wy 0.876 0.000* 
AIC** 85.433 
Log likelihood -36.717 
Pseudo R-squared 0.796 
Spatial Pseudo R-squared 0.001 

Table 7. Model Summary for Miami: 
 
* Indicates significant Correlation Coefficients 
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Ordinary Least Squares Model 

 

The OLS model exhibited the highest AIC value among all four cities (DC: 398.6 – 518.1, Detroit: 158.2 

– 173.8, El Paso: 44.4 – 46.0, Miami: 171.5 – 177.2). Additionally, the log likelihood values were the 

lowest in the model (DC: -257.0 – -248.8, Detroit: -84.9 – -77.1, El Paso: -21.0 - -20.2, Miami: -85.2 – -

83.8). The R-squared values were also relatively low, suggesting poor linearity or non-linear datasets. 

This observation is further supported by the spatial autocorrelation test, which revealed spatial 

dependence in the residuals. Overall, these diagnostic tests provide evidence that the OLS model is a 

poorer fit compared to both the SER and the SLR. 

 

The SER model exhibited the lowest AIC value among the three (D.C: 305.656, El Paso: 15.598, Miami: 

77.027) out of four cities. This is also reflected in their log likelihood values (DC: -147.828, El Paso: -

6.91, Miami: -36.717). The lambda value for all four cities came back significantly positive, reinforcing a 

better fit of a model which considers spatial dependence. The pseudo-R-squared values range from 

approximately <0.01 – 0.49. 

 

The SLR model exhibited the lowest AIC value in one out of four cities (Detroit: -18.826). This is also 

paralleled by its log likelihood value (15.413). The pseudo-R-squared values for all four cities ranged 

from 0.381 – 0.796, whereas the spatial pseudo-R-squared values ranged from < 0.01 – 0.539. The Wy is 

highly significantly positive across all four cities, indicating the presence of spatial spillover effects, 

where the value of the dependent variable at one location is influenced by the values of neighboring 

locations. This again provides evidence for the need of a model that considers spatial dependence.  

 

Spatial Error Model and Spatial Lag Model 

 

For the District of Columbia (Table 4), the SER model shows Tree Canopy and Impervious Surfaces as 

the only two variables that were significant predictors of afternoon temperature anomalies for the climate 
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type of C - Temperate. Tree Canopy was slightly negatively correlated with dependent variable 

(coefficient: -0.051, p-value: 0.000), while Impervious Surfaces was slightly positively correlated with the 

dependent variable (coefficient: 0.021, p-value: 0.002). Tree Canopy showed a stronger significance than 

Impervious Surfaces. Median Income (coefficient: 0.000, p-value: 0.968) and Population Density 

(coefficient: -0.466, p-value: 0.890) fail to attain statistical significance as predictors of afternoon 

temperature anomalies in the SER model for the District of Columbia. The pseudo- R-squared values 

(0.495) report that both Tree Canopy and Impervious Surfaces accounted for 49.5% of the variation in 

afternoon temperature anomalies, leaving 50.5% of the variation unaccounted for.  

 

For Detroit (Table 5), the SLR model indicates that Impervious Surfaces is the only variable that is a 

significant predictor of afternoon temperature anomalies for the climate type of D – Continental. 

Impervious Surfaces showed a slightly positive correlation (coefficient: 0.013, p-value: 0.000) with 

afternoon temperature anomalies. The remaining variables, Median Income (coefficient: -0.000, p-value: 

0.998), Tree Canopy (coefficient: 0.006, p-value: 0.840), and Population Density (coefficient: 1.823, p-

value: 0.309), are not statistically significant. Furthermore, the spatially lagged dependent variable (Wy) 

showed a significantly positive correlation (coefficient: 0.822, p-value: 0.000) suggesting the presence of 

spatial dependence from neighboring locations. The pseudo-R-squared value indicates that Impervious 

Surfaces, explains 69.17% of the variation in afternoon temperature anomalies. However, the Spatial 

pseudo-R-squared value (0.0831) suggests that Impervious Surfaces only explain for 8.31% of the 

variation in afternoon temperature anomalies once the spillover effect is accounted for.  

 

For El Paso (Table 6), the SER shows that Median Income and Impervious Surfaces as the only two 

variables that were significant predictors of afternoon temperature anomalies for the climate type of B – 

Arid. Median Income was slightly negatively correlated (coefficient: -0.002, p-value: 0.040) with the 

dependent variable while Impervious Surfaces with slightly positively correlated (coefficient: 0.007, p- 

value: 0.027) with the dependent variable. Impervious surfaces had a more significant correlation with the 
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dependent variable compared to Median Income. The pseudo- R-squared value (0.030) indicates that, 

collectively, Median Income and Impervious Surfaces explain 3.00% of the variation in afternoon 

temperature anomalies, leaving 97% unexplained.   

 

For Miami (Table 7), the SER shows Impervious Surfaces as the only variable that was a significant 

predictor of afternoon temperature anomalies for the climate type of A - Tropical. Impervious Surfaces 

had a slightly positive correlation (coefficient: 0.227, p-value: 0.054) with the dependent variable. The 

Pseudo-R-squared value (<0.01) indicates that Impervious Surfaces explained < 1% of the variation in the 

data, leaving approximately 99.99 % unaccounted for.  

 

All four cities, with their respective models, had highly significant positive spatial autocorrelation present 

(DC – lambda: 0.773, p-value: 0.000; Detroit – Wy: 0.822, p-value: 0.000; El Paso – lambda: 0.698, p-

value: 0.000; Miami – lambda: 0.887, p-value: 0.000). This indicates that the SER and the SL models are 

capturing a degree of the spatial dependence.  
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Figure 3. Predicted vs Residual Maps for the District of Columbia: Visual representations include (A) predicted 
neighborhood afternoon temperature anomalies (°F), (B) differences between predicted and observed values, and (C) 
satellite imagery of the area for reference. Satellite imagery retrieved from Esri’s World Imagery basemap (27). 
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Figure 4. Predicted vs Residual Maps for the Detroit, Michigan: Visual representations include (A) predicted 
neighborhood afternoon temperature anomalies (°F), (B) differences between predicted and observed values, and (C) 
satellite imagery of the area for reference. Satellite imagery retrieved from Esri’s World Imagery basemap (27). 
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Figure 5. Predicted vs Residual Maps for the El Paso, Texas: Visual representations include (A) predicted 
neighborhood afternoon temperature anomalies (°F), (B) differences between predicted and observed values, and (C) 
satellite imagery of the area for reference. Satellite imagery retrieved from Esri’s World Imagery basemap (27). 
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Figure 6. Predicted vs Residual Maps for the Miami, Florida: Visual representations include (A) predicted 
neighborhood afternoon temperature anomalies (°F), (B) differences between predicted and observed values, and (C) 
satellite imagery of the area for reference. Satellite imagery retrieved from Esri’s World Imagery basemap (27). 
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Predicted vs. Residuals 

 

According to the predicted map of Washington, D.C. (Figure 3), the SER model anticipates higher 

temperature anomalies (depicted by red shades) concentrated in the central downtown area, near Lincoln 

Heights and near the Anacostia Naval Station and Airforce Base. Lower temperature anomalies (depicted 

by blue shades) are observed in outlying regions, particularly around notable parks such as the National 

Arboretum, Rock Creek Park, and Dupont Park. Analyzing the residual maps reveals clusters of over-

predictions (depicted by dark burgundy shades) in the northern neighborhoods near Fort Totten and 

Manor Park. Conversely, there are under-predictions (depicted by dark green shades) in the eastern side 

of the city near the neighborhood of Sheridan-Kalorama. Furthermore, there are clusters of slightly 

underpredicted areas (depicted by light green shades) on the eastern and southeastern side of the city, near 

downtown and in proximity to the Anacostia Naval Station and Air Force Base.  

 

Based on the predicted map of Detroit (Figure 4), the SLR model indicates a concentration of elevated 

temperature anomalies in the upper west side of the city, particularly around districts 6 and 7. Conversely, 

clusters of lower temperature anomalies are observed on the east side of the city. Both the high and low 

anomaly clusters are situated outside the primary downtown district. Analyzing the residual map of 

Detroit, there are small clusters of slightly overpredicted areas (depicted by light burgundy shades) on the 

western and southeastern side of the city, while there are small clusters of underpredictions on the 

southwestern and eastern side of the city.  

 

Based on the predicted map of El Paso (Figure 5), the SER model estimates a cluster of elevated 

temperature anomalies around central El Paso, near the Mexican border. There are also smaller clusters of 

lower temperature anomalies on the northern side of the city near Franklin Mountains State Park and on 

the western side of the city. Areas of lower predicted temperature anomalies are on the outskirts of the 

city and/or at the edge of the state park. Analyzing the residual maps reveals clusters of overpredictions 
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away from central El Paso on the edges of the city boundary. Conversely, clusters of underpredictions are 

seen toward the middle of the city, near Franklin Mountain State Park, and next to El Paso’s International 

Airport.  

 

According to the predicted map of Miami (Figure 6), the SER model only estimates elevated temperature 

anomalies. The model estimates clusters of elevated temperature anomalies near the neighborhoods of 

downtown Miami, Little Havana, Civic Center, Allapattah, and Lemon City. The model also estimates 

clusters of slightly elevated temperature anomalies (depicted in orange shades) near the neighborhoods of 

Coral Way and Liberty City. Furthermore, there are areas of slightly elevated temperature anomalies on 

islands, such as Biscayne and San Marco islands. Analyzing the residual maps reveals clusters of 

overpredictions away from downtown Miami, while there are clusters of underpredictions toward 

downtown Miami, near the beaches. 

 

All four residual maps have some kind of spatial pattern (clustering) present, as the lambda values all 

returned highly significant (p-value: 0.000).  

 

6. Discussion 

 

This project aimed to identify and explore key variables associated with UHI intensity across four distinct 

cities in the U.S using regression analyses. These four cities were chosen based on their climate types, 

each representing the climate of C – Temperate, D – Continental, B – Arid, or A – Tropical. EDA was 

performed to determine an appropriate statistical model. Overall, the SER and SL models proved to be 

better model fits compared to the OLS model.  Impervious Surfaces was significant in three out of the 

four cities, while Tree Canopy and Median Income were significant in only one city. Population Density 

was not a significant predictor of UHI intensity in any of the cities. Finally, the presence of spatial 
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clustering in the residuals indicates that the model is capturing a degree of the spatial dependence but 

suggests that there are additional spatial dependencies not fully accounted for by the models. 

 

In Washington, D.C., the analysis suggests that increasing greenspace and reducing impervious surfaces 

may be an effective way to mitigate Urban Heat Island (UHI) intensity. This finding aligns with the 

understanding that green spaces provide natural cooling through shade and evapotranspiration, while 

impervious surfaces absorb and radiate heat, exacerbating UHI effects (3, 11). 

 

However, tree canopy coverage did not significantly predict UHI intensity in El Paso, Detroit, or Miami. 

This lack of significance could be due to various factors, such as the local climate type or the type of tree 

species available. For example, in the arid climate of El Paso, tree canopy coverage might not provide as 

much cooling effect as in more temperate regions. The native cacti species thrive in the desert-like 

climate, and canopy coverage from these plants may not be as effective at cooling the surrounding air 

compared to deciduous tree species found on the East Coast. Yet, in Detroit and Miami, where deciduous 

trees are more common, other factors may have a more significant impact on UHI mitigation. 

 

In El Paso, Median Income came out as a significant factor associated with lower temperature anomalies. 

This finding suggests that gentrification may mitigate the effects of UHI in this region, or it may align 

with current studies that found communities of low income and of color are disproportionately exposed to 

UHI (15, 16, 17). The impacts of past redlining practices may still be evident in El Paso. 

 

Although some variables were significant predictors of afternoon temperature anomalies, they did not 

account for most of the observations. There is considerable unexplained noise in the dataset, indicating 

that afternoon temperature anomalies may be unpredictable or that key predictor variables may be missing 

from the model. It's likely that variables such as tourism, land elevation, proximity to large bodies of 

water, and others could serve as additional indicators of UHI intensity. For example, El Paso, Texas, is 
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situated next to Ciudad Juárez, touching the border of the United States and Mexico. Thus, factors such as 

the movement of people across the border or conditions in the neighboring city could impact surrounding 

air temperatures.  To reduce the data noise, temperature readings over a longer period of time should be 

used for more accurate predictions. Further research into potential predictor variables should be 

conducted for each city before performing additional regression analyses. 
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