

ImageScan

A target detection processing chain using ArcMap

> Peter Telek Jun 2012

Advisor: Jay Parrish

MGIS – GEOG 596A – Peter Telek

Outline

- Background
- Overview
- Goals and Objectives
- Proposed Methodology
- Project Timeline
- Anticipated Results
- Summary
- List of Acronyms
- References

Background

- Increase in our ability to gather (intel) data
 - Especially geospatial data
 - Collecting more than 1500% more data than 5 years ago
 - ISR task force system can gather more than 53 TBytes data/day

Too Much Data?

Can you ever have too much data?

A simple search shows ...

Too Much Data?

Google	too much isr data	
U		
Search	About 359,000 results (0.20 seconds)	
Too Much Information, Not Enough Intelligence www.nationaldefensemagazine.org > > Archive > 2012 force not detected in time by ISR assets." Military drone operators amass untold amounts of data that never is fully analyzed because it is simply too much,		
The Warner Robins Patriot - Air Force awash in ISR data warnerrobinspatriot.com//18005407-Air-Force-awash-in-ISR-data Air Force awash in ISR data. by Gene Rector The Warner Robins It's too much and the capacity to gainfully process all of it. U.S. forces receive mountains of		
<u>Sensory overload: Military is dealing with a data deluge Defense</u> defensesystems.com//02//home-page-defense-military-sensors.asp Feb 4, 2010 – Too much data inhibits analysts' ability to unearth meaningful and surveillances (ISR), as reported by National Defense magazine. No one is		
All-seeing ISR Aerospace The Royal Aeronautical Society media.aerosociety.com/aerospace-insight/2012/03/02/allisr/6480/ Mar 2, 2012 – The operational ISR needs in Iraq and Afghanistan, and more recently with growing complexities in attempting to deliver so much ISR data from a if vital data is not to be missed or data flows become too massive to cope.		
[RTOS Support] More efficient ISR queue handling www.freertos.org//freertos_More_efficient_ISR_queue_handling_1 There was too much overhead from the taskswitching, and thus I lost data. The problem was that the serialISR called taskYIELD if the queue contents changed		

Too Much Data?

Too Much Information, Not Enough			
assets." Military drone operators ama untold amounts of data that never is Feb 4, 2010	erload: Military is dealing with ge Defense) – Too much data inhibits		
	pility to unearth meaningful		
The Waller Robins Faulou- Air Force a ministrata	ances (<i>ISR</i>), as reported by fense magazine. No one is		
All-seeing ISR Aerospace The Royal			
Aeronautical Society			
Mar 2, 2012 – The operational ISP needs in Iraq and Afghanistan, and more DARPA Doubling Down on Spy			
growing complexities in attempting Technologies - AUVAC			
much ISR data from a if vita Apr 18, 2012 - I	But analysts already		
be missed or <i>data</i> flows become complain that	it they are receiving too		
to cope. much data f	rom <i>ISR</i> assets. DARPA		
www.freertos.org//freertos_More_effic USED to focus	s more heavily on sensors		
There was too much overhead from the taskswip into and two riost da was that the serialISR called taskYIELD if the queue contents hanged			

Background (cont.)

- Increase in our ability to gather (intel) data
 - Especially geospatial data
 - Collecting more than 1500% more data than 5 years ago
 - ISR task force system can gather more than 53 TBytes data/day
- Real challenge is to improve our Processing, Exploitation/Analysis, and Dissemination (PED)
 - Continuous goal is to improve PED efficiency
 - Change/improve data dissemination
 - Data transfer Identify data transmission bottle necks
 - Maximize our resource efficiencies
 - Identify high priority data for detailed analysis
 - Automate routine analysis

PENNSTATE

Background (cont.)

- Automation is a must
 - Computers are cost effective tools
 - Complete repetitive tasks
 - Analyst's time is expensive/valuable manage it wisely
 - Need to build processes to …
 - maximize their efficiency by reducing their time spent on data searches and preprocessing
 - help prioritize their efforts
 - ID key data sets
 - ID points of interest
 - Catalog Results are critical with ISR applications, distributed/federated analysis, and information sharing
 - Build historical databases
 - Useful in trend analysis
 - Useful in detecting anomalies
 - Focus analyst on unusual (potentially) key information

Overview

- The goal of this proposal is to:
 - Create an automated or semi-automated image scanning and reporting processing chain (using ArcMap and other software if needed)
 - Alert customers, analysts, or end-users with a geospatial report of target locations and a subset list of priority images to analyze

Goals and Objectives

- ImageScan will create a system to
 - process data in an (ingest) directory,
 - read/enter a set of criteria [bounding box(es),
 - start stop dates,

PENNSTATE

- detection threshold limits (size and intensity)],
- summarize the data (footprints, collection date/time),
- identify/highlight data sets that meet the criteria for analyst review; and
- create reports (web pages, thumbnails, dynamic pages), and
- create shapefiles.
 - The shapefiles would be used to update a geodatabase for treading or other sensor integration/fusion analysis efforts.
- Caveat: This is meant to be a robust scanning technique to help pick out targets of interest, data sets of interest with a unique (I think) method of detecting and bounding high contrast targets. I have no doubt this can be improved upon. Additional work would be needed to make any part of this project more efficient.

The Objective

- **The Problem**: With a library with over a thousand raster images, identify all data sets with high intensity values pixels (that exceed DN xxxx).
- For <u>each</u> raster image:
 - Determine the location of each detection
 - Do not report every pixel location; Cluster neighboring pixel (detections) together so that a multiple pixels target is reported as one target detection. For example, an oval 4x10 pixel target is reported as 1 target location and 1 polygon and not 40 individual target detections.
 - Locate the center of each target detection
 - Create a polygon for each target detection
 - Bonus: eliminate false alarms in this case, small targets single pixel detections
 - Create a library of detections that can be searched geographically, temporally
 - Repeat for the next image
- Repeat this every week (or every data delivery cycle)
- The results from ImageScan will be integrated with other data sources for a separate research project which is outside the scope of this capstone
- This Capstone project will create a working prototype that will work on a few images.

PENN<u>STATE</u>

Sample Images

WASP Thermal MWIR Images of Ginna Power Plant

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=4&ved=0CDUQFjAD&url=http%3A%2F%2Flandsat.usgs.gov%2Fdocuments%2F6a_Schott_Overview_of_DIRS_Research%2520Activities.pdf&ei=N33JTqLfNa7 y2gW6q4ngDw&usg=AFQjCNHKb35F1bXljMoikF9xyUvBxEInCQ&sig2=vop2MSeAqS7z707GnHjOaw

MGIS - GEOG 596A - Peter Telek

Other Missions and Sample Imagery

Advantages of ImageScan

- Automated scanning to minimize manual review of all data and identify "high interest" data
- Automated target detection
- Automated reporting

PENNSTATE

 Automatically builds a historical database for trend analysis

Proposed Methodology

- Phase I Design and Setup
- Phase II Prototype Development
- Phase III Automation Development
- Phase IV Output Design & Implementation

Phase I – Design and Setup

Choose a mission

PENNSTATE

- Choose a mission with target(s) of interest that can be observed with bright on dark or dark on bright contrast
- Identify a sensor that will accomplish the mission
- Identify a data source with several raster images
 - Choose several data sets with targets of interest
 - Easy, high contrast, little or no issues or artifacts
 - Medium, high contrast targets, various sizes to test spatial size filter, different geographic area(s)
 - Hard, complex area, varying sizes and intensities
- Explore and choose user inputs and format
 - Inputs: Date time, Geographic area, Intensity range, Other
 - Formats: csv/text, shape & attributes
 - Input methods: GUI, text file, off-line or part of the program
- Identify initial software used
 - ArcGIS, Other?

PENN<u>STATE</u>

Phase II – Prototype Development

- Develop a working prototype Manual design and test cycle
 - Design and test target detection algorithm within ArcMap
 - Test target detection algorithm on initial/easy data sets
 - Identify issues with target detection algorithm
 - Refine algorithm to improve detection, speed, accuracy and retest

Phase III – Automation Development

Automate prototype

PENNSTATE

- Write code to run the prototype process from a command line script for one data set
- Modify the code to work on a data set with any filename
- Modify the code to work on a list of files

Phase IV – Output Design & Implementation

• Design the output

PENNSTATE

- Identify any requirements
 - Information target
 - Medium files, intranet, internet, WMS/WFS, GoogleEarth, email, test msgs, smart phone
 - Information Automated processing logs
- Design and develop a sample output
 - Input data footprints
 - Target detections
 - Possible file formats (CSV, text, SHP, KML)
- Design and create a summary report and metrics
 - If run on a large set of data (receive a hard drive of data with hundreds of data files)
 - If run daily (run routinely)
 - If run on images as they arrive (in an ingest folder)

PENN<u>STATE</u>

Process Improvements (as time permits)

- Add additional user input parameters
- Add watch box alerts
- Change the detection algorithm
- Call an external algorithm detection program
- Add additional output

PENNSTATE

Project Timeline

Project Phase

An example

- **Goal**: Detect and report locations of all probable hot spots with Thermal IR (MWIR) imagery
- Derived requirements:
 - Accomplish daily
 - Accomplish quickly with automated processing and minimal analyst input
 - Results will be in standard geospatial formats

Anticipated Results - Process Overview

PENN<u>STATE</u>

Sample Image

WASP Thermal MWIR Image of Ginna Power Plant

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=4&ved=0CDUQFjAD&url=http%3A%2F%2Flandsat.usgs.gov%2Fdocuments%2F6a_Schott_Overview_of_DIRS_Research%2520Activities.pdf&ei=N33JTqLfNa7 y2gW6q4ngDw&usg=AFQjCNHKb35F1bXIjMoikF9xyUvBxEInCQ&sig2=vop2MSeAqS7z707GnHjOaw PENN<u>State</u>

IMAGEID

20111116_041234_nitf

20111116 041234.nitf

ID

S001

S002

DATE

2011-11-16*

2011-11-16*

TIME Z

04:12:34Z*

04:12:34Z*

LAT

43.27868056

43.27868056

LON

-77.30855556

-77.30855556

Е

Anticipated Results

Image Close-up

 1024*
 12.34
 WASP (MWIR)
 maps 0 2012 Geoffse
 Coordination

 1024*
 2.2
 WASP (MWIR)
 N
 Sample Automated Detection - Not verified

ections: To here - From

SENSOR

KM

Summary

- Data volume is increasing
- Identifying smarter ways to process, store, transmit, and analyze large volumes of data is essential
- The proposed ImageScan process will be an ArcGIS based tool to complete an unsupervised processing and reporting chain to examine georectified raster imagery to automatically
 - Identify high interest data sets and
 - Report and database locations of potential targets of interest
- Shapefile and tabular results can be used for workload management, trend analysis, watch box reporting, and alert reporting
- Request approval to proceed with the proposed ImageScan project

Acronyms & Definitions

•	AGI	- Advanced Geospatial Intelligence
•	ArcMap	- ESRI Geospatial Analysis software
•	ATR	- Automatic Target Recognition
•	BATC	- Ball Aerospace & Technologies Corp.
•	CBP	- Customs and Border Patrol
•	CSV	 Comma Space Variable text file – common text file format for tables
•	DHS	- Department of Homeland Security
•	DN	- Digital Number
•	ENVI	 Commercial Remote Sensing Analysis software
•	GEOINT	- GEOspatial INTelligence
•	HTML	 Hyper text markup language - common file format for web pages
•	IC	- Intelligence Community
•	L0/L1/L2/L3	 Level # processing (L0 is raw ◊ L3 is substantially more processed)
•	NGA	- National Geospatial Agency
•	NITF	- National Image Transfer Format
•	NORTHCOM	- Northern Command
•	Opticks	 Open Source Remote Sensing Analysis software
•	shp	 shape file (ESRI GIS standard) - – common GIS file format
•	TIR	- Thermal Infra Red
•	USCG	- United States Coast Guard
•	USFS	- United States Forest Service
•	WFS	- Web Feature Service
•	WMS	- Web Mapping Service

References

- Costlow, Terry. "Geospatial intel evolution will continue at rapid pace". Created Oct 19, 2011, retrieved Nov 24, 2011, from http://www.defensesystems.com/Articles/2011/10/19/GEOINT-technology-development.aspx
- Kehler, General C. Robert. "2011 GEOINT Symposium Speech". Oct 19, 2011, retrieved Nov 24, 2011, from http://www.stratcom.mil/speeches/2011/75/2011_GEOINT_Symposium_Speech/
- Raytheon Company. "Detecting the Undetectable: Hyperspectral Sensors Meet Critical Military and Civilian Needs". Updated Aug 11, 2011, retrieved Nov 26, 2011, from <u>http://www.raytheon.com/newsroom/technology/rtn11_auvsi/hyperspectral/</u>
- Rosenberg, Zach. "Raytheon's ACES HY enters production". Jun 19, 2011, retrieved Nov 26, 2011, from http://www.flightglobal.com/news/articles/paris-raytheons-aces-hy-enters-production-358260/NASALANCE. "Frequently Asked Questions (FAQ) LANCE". Updated Nov 28, 2011, retrieved Nov 29, 2011, from http://lance.nasa.gov/imagery/rapid-response/frequently-asked-questions/#faq03
- FIRMS. "Fire Information for Resource Management System (FIRMS) Background." Retrieved Nov 29, 2011, from http://maps.geog.umd.edu/firms/readmore.htm
- Friedman, Karen S, et al. *"Routine Monitoring of Changes in the Columbia Glacier, Alaska, with Synthetic Aperture Radar."*, <u>Remote Sensing of Environment</u>, Volume 70, Issue 3, December 1999, Pages 257–264, retrieved Jun 21, 2012, from <u>http://www.sciencedirect.com/science/article/pii/S0034425799000425</u>

Questions ?

Email: put122@psu.edu

MGIS – GEOG 596A – Peter Telek